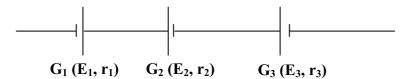
point de fonctionnement, adaptation des dipôles

Exercice n° 1:

On considère un circuit formé par un générateur de f.é.m. E=24V et $r=2\Omega$, un moteur de f.c.é.m E'=12V et de résistance interne $r'=4\Omega$

- 1- Ecrire les lois d'ohm relatives a chaque dipôle.
- **2-** Tracer sur un même graphe l'allure des caracterisques intensité tension du dipôle générateur et du moteur.
- 3- Déterminer le point de fonctionnement de circuit.
- 4- Calculer la tension aux bornes de chaque dipôle

Exercice n° 2:


I- L'étude expérimentale de la variation de la tension U aux bornes d'un dipôle générateur G_1 (E_1 , r_1) en fonction de l'intensité I du courant débité à donner le tableau suivant :

Intensité du courant I(A)	1,5	3,5
Tension U(V)	14	6

- **1-** Calculer la résistance interne \mathbf{r}_1 du générateur \mathbf{G}_1 .
- **2- a-** Enoncer la loi d'ohm aux bornes de **G** générateur.
 - **b-** Déduire la valeur du
- ₁ du générateur.
- II- Dans la suite de l'exercice en considère le générateur G_1 de f. e. m E_1 = 20 v et de résistance interne r_1 = 4 Ω .

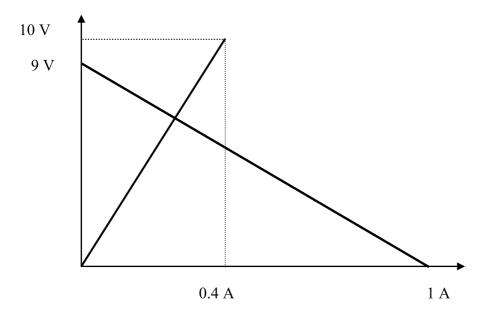
Le générateur G_1 (E_1 , r_1) est monté en série avec un $2^{\text{ème}}$ générateur G_2 (E_2 , r_2).

- 1- Représenter G₁ et G₂. Justifier
- 2- L'équivalent de G_1 et G_2 est un générateur G (E = 32 v; $r = 6 \Omega$).
 - a- Exprimer E en fonction de E₁ et E₂; Déduire E₂.
 - **b-** Exprimer r en fonction de r_1 et r_2 ; Déduire r_2 .
- 3- Les générateurs G_1 et G_2 sont montés avec un $3^{\text{ème}}$ générateur G_3 (E_3 = 18 v ; F_3 = 5 Ω).

Déterminer les grandeurs caractéristiques **E** et **r** du générateur équivalent à ces trois générateurs. Expliquer.

Exercice n°3

On considère le circuit en série formé par un générateur G (E = 15 v ; r = 2 Ω) un moteur


M (E' = 10 v ; r' = 2 Ω) et un résistor de résistance R.= 16 Ω

- 1- en appliquant la loi de pouillet determiner l'intensité du courant
- **2-**Calculer en joule I énergie fournie par le génrateur au circuit exterieur pendant une durée $\Delta t = 5$ minutes.
- 3- a-calculer l'énergie reçue par le moteur.pendant $\Delta t = 5$ minute.
- **b-** Calculer le rendement du moteur.
- 4-Sachant que l'énergie électrique fournie par le générateur est totalement consommé par les dipôle Récepteurs (Résistor et Moteur)

Déterminer l'énergie consommée par le résistor pendant Δt = 5 minutes , par deux méthodes différentes

Exercice n°4

Les courbes (I) et (II) ci-dessus représentent respectivement les caractéristiques intensité tension d'un générateur et d'un électrolyseur

- 1-Déterminer graphiquement les grandeurs électriques qui caractérisent les deux dipôles.
- -la fem et la résistance interne du générateur E et r
- la résistance R
- 3-on met en générateur en serie avec R
- a-que represente le point d'intersection des deux caracteristiques
- b-ces deux dipoles sont-ils adaptés, justifier
- c-determiner par application de la loi de pouillet l'intensité du point de fonctionnement

