DEVOIR DE SYNTHÈSE

Mathématique

Mme: Yahmadi Selmi Sonia A. scolaire : 2010/2011

Exercice 1 (6 points) (Q.C.M)

Donner la réponse correcte :

1)
$$\sqrt{(-4)^2 + 4}$$
 égal à

a)
$$|-4| + 2$$
 , b) $2\sqrt{5}$, c) 0

2) Le réel
$$\frac{2^{31}-2^{24}}{2^{24}-2^{30}}$$
 égal à a) -1 , b) 2 , c) $\frac{1}{2}$

, c)
$$\frac{1}{2}$$

3) On donne
$$x = \sqrt{17 - 12\sqrt{2}}$$
 et $y = \sqrt{17 + 12\sqrt{2}}$

4)
$$(-3)^{15} x (-2)^{13} x (-5)^{11}$$
 est a) négatif , b) nul , c) positif

5) On a sin 15° =
$$\sqrt{\frac{2-\sqrt{3}}{4}}$$
 alors cos15° égal à a) 1, b) $\sqrt{\frac{2+\sqrt{3}}{4}}$, c) $\sqrt{\frac{4}{2-\sqrt{3}}}$

6) Si \widehat{ABD} et \widehat{BDA} sont deux angles alternes internes déterminés par les droites (AB) et (CD) Coupées par (BD) alors:

Exercice 2: (7 points)

1) Simplifier
$$A = \sqrt{45} - \sqrt{4} - \sqrt{20}$$
 $B = \sqrt{(1 - 2\sqrt{5})^2} + |3 - \sqrt{5}|$
2) Soit $C = \frac{5+3\sqrt{2}}{3-\sqrt{2}}$ et $D = \frac{\sqrt{27}-2\sqrt{6}}{\sqrt{3}}$.

2) Soit
$$C = \frac{5+3\sqrt{2}}{3-\sqrt{2}}$$
 et $D = \frac{\sqrt{27}-2\sqrt{6}}{\sqrt{3}}$.

a) Ecrire C et D sans radical au dénominateur .

b) Vérifier que C et D sont inverses puis montrer que $\frac{2}{C} + \frac{2}{D} \in IN$.

3) Simplifier
$$E = \frac{-\sqrt{a^2b^4 + ab\sqrt{a^2 + \sqrt{4a^4b^2}}}}{ab}$$
 , a< 0 , $b > 0$.

4) a) Simplifier F =
$$\frac{(ab^2)^{-3}(a^2b^3)^2}{(-a^{-2}b)^4(-a^3b^{-2})^{-1}} \ .$$

b) Calculer E pour
$$\frac{a^2}{b} = \sqrt{2}$$

Exercice 3: (7 points)

Soit ABC un triangle rectangle en A tel que BC = 9 et AC= 6. [AH] est l'hauteur issue de A.

- I) 1) Montrer que $\sin \widehat{ABC} = \frac{2}{3}$ déduire $\cos \widehat{ABC}$.
 - 2)Montrer que AB = $3\sqrt{5}$.
 - 3) Calculer AH.
- II) E est un point de [AC] tel que AE= 4.

1) La parallèle à (BC) passant par E coupe (AH) en F. Montrer que
$$\frac{AF}{AH}=\frac{2}{3}$$

2) (CF) coupe (AB) en M. La parallèle à (CF) passant par E coupe (AB) en N.

a) Calculer
$$\frac{AN}{AM}$$
.

b) Déduire que (FN)// (HM).

3) Montrer que $\widehat{MHN} = \widehat{NFA}$