Toutes les matières, tous les niv

2ème Sciences: Sc7 Durée: 1heure

Date: 20 octobre 2008

Coefficient: 4

Devoir de contrôle N°1 Mathématiques

Nom:			N° :
Exercice N°1: (10 por	ints)		
I – QCM Pour chacune des questic	ons, une et une seule pro	position est exacte. C	ocher la bonne réponse :
1) Un seul de ces nombr	res appartient à Q_+^* :		
$\square \frac{\sqrt{3}}{3}$	$\Box \frac{\pi}{2}$	□ 0	
2) L'écriture scientifique	e du nombre $\frac{0,000\ 0004}{9}$	<u> </u>	
	O		
3) $\sqrt{(1+\sqrt{3})^2} - \sqrt{(1-\sqrt{3})^2}$	$\left(\frac{1}{2}\right)^2 = \frac{1}{2\sqrt{3}}$	\Box 4 $\sqrt{3}$	
4) $\frac{1}{\sqrt{2}-1} + \frac{1}{\sqrt{2}+1} =$			
□ 2	\square $2\sqrt{2}$		
		it une augmentation d	e 20% , suivi d'une réduction
de 20% . Le prix fina	50	<u> </u>	<u> </u>
6) $\overrightarrow{CH} + \overrightarrow{AP} + \overrightarrow{IC} + \overrightarrow{HA}$	$+\overrightarrow{PO} = $ $\square \overrightarrow{OI}$	\Box \overrightarrow{CI}	\square \overrightarrow{IO}
7) Soit <i>ABC</i> un triangle	quelconque. Le point S	tel que : $3\overrightarrow{AS} = \overrightarrow{AB} +$	\overrightarrow{AC} est:
\Box le milieu de $[BC]$		el que <i>SABC</i> est un pa	rallélogramme
☐ le centre de grav	vité de ABC	l'orthocentre de <i>ABC</i>	

8)	Soit A et B deux points de milieu I. Le point E tel que $\overrightarrow{AE} = -3\overrightarrow{BE}$ est :				
	\square le milieu de $[AI]$	\square le symétrique de I par rapport à A			
	\square le milieu de $[BI]$	\square le symétrique de I par rapport à B			
II -	– Répondre par Vrai ou Faux :				
1)	On considère le nombre $\pi = 3,1415926535 \dots$				
2)	 La valeur approchée à 10⁻³ prés par de La valeur approchée à 10⁻⁴ prés par exc La valeur arrondie à 10⁻⁴ prés par exc I, J, K, et L sont quatre points du plan tels que 	xcès est: 3,1415 ès est: 3,1416			
	• $IJKL$ est un parallélogramme. • $\overrightarrow{MJ} = -\overrightarrow{MK}$.				
	 L'image de <i>J</i> par la translation de vect [<i>IL</i>] et [<i>JK</i>] ont le même milieu. 				
	• K est le symétrique de J par rapport à	(<i>IL</i>).			

Exercice N°2: (2 points)

Soit le réel positif $A = \sqrt{3 + \sqrt{5}} + \sqrt{3 - \sqrt{5}}$

- 1) Calculer A^2
- 2) En déduire une écriture plus simple de A

Exercice N°3: (4 points)

On considère le réel $a = \frac{2}{\sqrt{3} + 1}$.

- 1) Montrer que $a = \sqrt{3} 1$
- 2) Choisissez la bonne réponse : $a \in]-\infty,0]$ ou $a \in [0,1[$ ou $a \in [1,+\infty[$.
- 3) a Ecrire en fonction de a les nombres :

$$x = \sqrt{3} - 1$$
; $y = \sqrt{\frac{2}{\sqrt{3} + 1}}$; $z = -\sqrt{3} + 1$ et $t = 4 - 2\sqrt{3}$

b – Ranger par ordre croissant les nombres x, y, z et t

Exercice N°4: (4 points)

Soit ABCD un parallélogramme.

On considère les points M et N tels que : $\overrightarrow{BM} = \frac{1}{2} \overrightarrow{AB}$ et $\overrightarrow{AN} = 3\overrightarrow{AD}$

- 1) Construire les points M et N.
- 2) Exprimer \overrightarrow{MC} en fonction de \overrightarrow{BA} et \overrightarrow{BC}
- 3) Exprimer \overrightarrow{CN} en fonction de \overrightarrow{BA} et \overrightarrow{BC} .
- 4) En déduire que les points M, N et C sont alignés.