Mathématiques (2ème SC)

Prof: Bourokba Hassen

durée: 60 min

Exercice 1: (4 points)

Répondre par vrai ou faux (sans justification)

- 1) Si M est le milieu du segment [AB] alors $\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{0}$
- 2) Si $\|\vec{u}\| = 1$ et $\|\vec{v}\| = 1$ alors $\|\vec{u} + \vec{v}\| = 2$
- 3) $|0.4 (0.4)^2| = 0.4 (0.4)^2$
- 4) $(1 \sqrt{2})x > 1$ est équivaut à $x > \frac{1}{(1 \sqrt{2})}$

Exercice 2: (3 points)

- 1) Calculer: $(2\sqrt{3}-4)^2$ et $(4+\sqrt{3})^2$
- 2) Déduire que le nombre $\sqrt{28-16\sqrt{3}}+2\sqrt{19+8\sqrt{3}}$ est un entier.

Exercice 3: (6 points)

- 1) Résoudre dans \mathbb{R} : a) |3x + 2| = 4 b) $|x + 5| \ge 1$ c) $\frac{2x+1}{x-2} = \frac{4x}{2x-1}$

- 2)a) Montrer que $x^2 + \sqrt{3}x 5 = (x \sqrt{3})(x + 2\sqrt{3}) + 1$
 - b) Résoudre dans \mathbb{R} : $x^2 + \sqrt{3}x 6 = 0$

Exercice 4: (7 points)

- 1) Soit $(0, \vec{i}, \vec{j})$ un repère orthonormé.
 - a) Placer les points A(3;0), B(4;2) et C(1;2)
 - b) Montrer que OABC est un parallélogramme
- 2)a) Construire les points E , F et G tels que $\overrightarrow{AE} = -2\overrightarrow{AC}$; $\overrightarrow{AF} = 3\overrightarrow{AB}$ et $\overrightarrow{BG} = -\overrightarrow{BC}$
 - b) Déterminer les composantes des vecteurs \overrightarrow{AE} et \overrightarrow{AF} dans la base (\vec{i}, \vec{j})
 - c) Dire pourquoi $(\overrightarrow{AE}, \overrightarrow{AF})$ est une base de l'ensemble des vecteurs du plan.
 - d) Montrer que les composantes du vecteur \overrightarrow{BG} dans la base $(\overrightarrow{AE}, \overrightarrow{AF})$ sont $\begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$

