L.I.R (2010-2011)

DEVOIR DE CONTRÔLE N°1

PROF: N. ALOUINI(YAHYAOUI) 2SC7

Exercice: N°1(4points)

Répond par "vrai" ou "faux"

1)
$$(2/9) \in ID$$

$$, 2) 6,13 \in ID$$

4) Si
$$(a \ge 1)$$
 alors $(1 \le \sqrt{a} \le a \le a^2)$

5) (I = A*B) équivaut à (
$$\overrightarrow{BI} = (1/2) \cdot \overrightarrow{AB}$$
)

6)
$$\vec{u} = m\vec{i} + 2\vec{j}$$
 et $\vec{v} = 5\vec{i} - 3\vec{j}$

a)
$$\vec{u}$$
 et \vec{v} sont colinéaires pour m= (-10/3)

b) Le couple (\vec{v}, \vec{u}) est une base de l'ensemble de vecteur pour m=1

Exercice: N°2(6points)

1-/Résoudre dans IR E: |3 -

E:
$$|3 - 2x| = 5$$
 puis (I): $\sqrt{x + 2} \ge 2$

2-/Soit A=
$$14 - 6\sqrt{5}$$

a) Ecrire l'expression "A" sous la forme (a-b) ²

b) Simplifier B= $\frac{3-\sqrt{5}}{14-6\sqrt{5}}$ puis écrire B avec un dénominateur entier

Exercice: N°3(5points)

Soit $T(x) = -x^2 + x + 6$

1-/ Soit $x \in]1,3[$ Encadrer $< -x^2 >$ puis < x+6 > en déduire un encadrement de T(x)

2-/ Résoudre T(x)=0. En déduire une factorisation de T(x)

Exercice: N°4(5points)

Soit ABCD un trapèze tel que $\overrightarrow{DC} = 2\overrightarrow{AB}$ et « O » le point tel que $\overrightarrow{DO} = -\frac{1}{2}\overrightarrow{DA}$

1-/ Le couple $(\overrightarrow{DC},\overrightarrow{DA})$ forme -t-il- une base de ${\cal V}$? Justifier la réponse

2-/ On considère le repère $\mathcal{R} = (D, \overline{DC}, \overline{DA})$

a) Déterminer les coordonnées des points D, C, A, B et O dans le repère $\boldsymbol{\mathcal{R}}$

b) Déterminer les coordonnées du point « I » milieu du segment [CO]

c) En déduire les coordonnées du point « E » tel que DCEO Soit un parallélogramme

