Exercice 1

Cocher la réponse exacte.

I. Comment s'écrivent ces expressions?

	А	В	С
1. $(2x - 1)^2 - 4(x - 2)^2$	$2(x + 1)^2$	3(4x - 5)	4(x - 1)(x - 2)
2. $4(x - 1)^2 - (x - 3)^2$	(x + 1)(3x - 5)	(x + 1)(x - 7)	3(x + 2)

II. Quel ensemble de solutions admettent ces équations ?

	А	В	С
$3. 5x^2 - 20x = 0$	{3;0}	{1;-2}	{0;4}
$4. \ 3x^2 + 27 = 0$	{1}	{-3;3}	Ø
5. $9(3x + 5)^2 - (x - 1)^2 = 0$	{1;3}	$\left\{-2;-\frac{7}{5}\right\}$	{-2;-1}
$6. 4x^2 + 4x + 1 = 0$	$\left\{-\frac{1}{2}\right\}$	{1;2}	Ø

III. Quel ensemble de solutions admettent ces inéquations ?

	А	В	С
7. 5x² - 20 ≤0	Ø	[0; 4]]-00; 2[
8. (2x - 1) ² - 4(x - 2) ² > 0	[1;2]] -co ;3[$\left[\frac{5}{4};+\infty\right[$
9. 4(x - 1) ² - (x - 3) ² ≥0	Ø	$\left[-1;\frac{5}{3}\right]$	$]-\infty,-1]\cup\left[\frac{5}{3},+\infty\right[$
10. $x^2 + 1 \ge 2x$	IR	R -{1}]1; +∞[

Exercice 2

Les fonctions suivantes sont-elles des fonctions polynômes ?

1. f:
$$x \longmapsto 4x^2 + x + 1$$
;

$$x^2 - 6x + 9$$

2. g:
$$x \mapsto x-3$$
;

3. h:
$$\times \longmapsto \sqrt{x^2 + 4x}$$

Exercice 3

Déterminer le degré et les coefficients des fonctions polynômes suivantes, après les avoir écrites sous forme réduite et ordonnée :

$$f_1: x \mapsto (x-1)^2 - 4(2x-3)(x+2)^2 + 3(x-4)(x+2)$$

f₁:
$$x \mapsto (x - 1)^2 - 4(2x - 3)(x + 2)^2 + 3(x - 4)(x + 2)$$

f₂: $x \mapsto (2x - 1)^3 - 2(2x + 3)(x - 4)^2 - 4(x - 1)^2(x + 3)$
f₃: $x \mapsto (2x^3 + 2x - 1)(4x^4 + 5x^2 + 3)$.

$$f_3: x \longrightarrow (2x^3 + 2x - 1)(4x^4 + 5x^2 + 3)$$

Exercice 4

On donne les fonctions polynômes :

$$\begin{cases} f: x \mapsto 2x^3 - 5x + 1 \\ g: x \mapsto 3x^4 - 2x^2 + 7x - 3 \end{cases}$$

Exprimer f + g, f.g, 2f-3g, f² (= f. f).

Exercice 5

Un texte de devoir est mal écrit, et les coefficients en x³ et en x d'une fonction polynôme ont été effacés. On ne voit que $p(x) = x^4 + ...x^3 - 2x^2 + ...x - 3$.

La première question du problème est : vérifier que -1 et 3 sont racines de la fonction polynôme p. Comment retrouver les coefficients effacés ?

Exercice 6

Soit les fonctions polynômes :

$$\begin{cases} p(x) = x^4 - 6x^3 + 19x^2 - 25x + 24\\ q(x) = (ax^2 + bx + c)^2 + dx + e \end{cases}$$

Quels sont les réels a, b, c, d, e tels que p et q soient égales ?

🔑 Exercice 7

Discriminant réduit

Soit l'équation $ax^2 - 2b'x + c = 0$ et soit $\delta' = b'^2 - ac$.

En utilisant les résultats de cours, discuter suivant le signe de δ ' le nombre de solutions, et, lorsqu'elles existent, exprimer celles-ci en fonction de δ ', a et b'.

Exercice 8

1. Soit p: $x \mapsto x^3 - 3x^2 - 13x + 15$.

Chercher une racine évidente de p, puis résoudre dans ${\bf R}$ l'équation p(x) = 0.

2. Soit p: $x \mapsto 4x^3 - 8x^2 - 47x + 105$. Calculer p(3) et en déduire la résolution dans \mathbf{R} de l'équation p(x)=0.

3. Même travail avec p: $x \mapsto x^3 + 7x^2 + 12x + 10$ et p(-5).

4. Soit p: $x \mapsto 9x^4 - 12x^3 - 83x^2 - 50x - 8$. Calculer p(4) et en déduire une première factorisation de p(x). Chercher une racine évidente de p, puis résoudre p(x) = 0.

Exercice 9

Résoudre dans ${f R}$ les équations :

$$7x^2 - 12x + 5 = 0$$
 et $7x^2 + 12x + 5 = 0$.

Comparer les solutions des deux équations.

Ne pouvait-on pas prévoir ce résultat ?

Exercice 10

Trouver trois entiers consécutifs dont la somme des carrés est 509.

Exercice 11

Résoudre dans ${f R}$ les équations suivantes :

1.
$$x^4 - 2x^2 - 8 = 0$$
;

1.
$$x^4 - 2x^2 - 8 = 0$$
;
2. $3x^4 - 11x^2 + 6 = 0$;

3.
$$2 \times + 5 \sqrt{x} - 3 = 0$$
;
 $\frac{1}{x+4} - \frac{3}{3x-5} = \frac{7}{10-7x} + \frac{3}{3x+20}$

Exercice 12

Le nombre d'or est la solution positive de l'équation $x^2 - x - 1 = 0$; on le note α .

1. Calculer Ct.

2. Montrer que
$$\alpha^2 = 5\alpha + 3$$
 et $\frac{1}{\alpha^2} = 2 - \alpha$

Exercice 13

Résoudre dans \mathbf{R} les inéquations suivantes :

1.
$$2x^2 + 7x - 4 = 0$$
;

2.
$$x^2 - 15x + 50 < 0$$
;

3.
$$3x^2 + 20x + 50 > 0$$
;

$$\frac{2}{x-3} + \frac{4}{x-2} \le 3$$

Exercice 14

$$\begin{cases} x + y = 0 \\ xy = 56 \end{cases}$$

$$\begin{cases} x - y = 15 \end{cases}$$

Résoudre dans \mathbf{R} le système : $\begin{cases} x+y=15 \\ xy=56 \end{cases}$ En déduire les solutions du système : $\begin{cases} x-y=15 \\ xy=-56 \end{cases}$

Exercice 15

La somme des âges de deux amis est 53 ans. Dans cinq ans, le produit de leurs âges sera 990. Ouels sont leurs âges ?

Exercice 16

Quelles sont les dimensions d'une boîte parallélépipédique à base carrée dont le volume est V = 1 875 cm^3 et telle que la surface de carton employée est $S = 950 \text{ cm}^2$. (On se ramènera à une équation du troisième degré dont on cherchera une racine évidente.)