Série 1 d'exercices 2^{ème} sciences (Géamétrie)

Exercice n°1 Vrai-Faux

- 1. Si ABC est un triangle isocèle en A, alors $\overrightarrow{AB} = \overrightarrow{AC}$
- 2. Si ABCD est un parallélogramme, alors $\overline{BA} + \overline{BC} = \overline{BD}$
- 3. Si ABC est un triangle de médiane [AI], alors $\overrightarrow{AI} = \frac{1}{2} (\overrightarrow{AB} + \overrightarrow{AC})$
- 4. Si $\overrightarrow{AC} = 3\overrightarrow{AB}$, alors $\overrightarrow{BC} = 2\overrightarrow{BA}$
- 5. Si C est un point de la droite (AB) et que $\overrightarrow{CD} = 2008\overrightarrow{BA}$, alors A, B, Cet D sont alignés
- 6. Dans un repère (O, \vec{i}, \vec{j}) Si $\overrightarrow{OM} = 2\vec{i} + \vec{j}$ et $\overrightarrow{ON} = -\vec{i} + 2\vec{j}$ alors \overrightarrow{MN} a pour coordonnées $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$

Exercice n°2 QCM

ABC est un triangle, G le centre de gravité et J le milieu de [AC]. Alors :			
Dans un repère (O, \vec{i}, \vec{j}) , les points M et N			
vérifient : $\overrightarrow{OM} = -2\overrightarrow{i} + 3\overrightarrow{j}$ et $\overrightarrow{ON} = \overrightarrow{i} - \frac{3}{2}\overrightarrow{j}$ Les coordonnées du milieu de [MN] sont :	$\Box\left(-\frac{1}{2},\frac{3}{4}\right)$	$\square\left(\frac{3}{2}, -\frac{9}{4}\right)$	$\Box\left(-\frac{3}{2},\frac{9}{4}\right)$
Si I est le milieu de [AB], alors pour tout point M du plan on a :	$2\overline{MI} = \overline{MB} + \overline{MA}$	$\boxed{\overrightarrow{MI}} = \overrightarrow{AI} + \overrightarrow{AM}$	$\boxed{\overrightarrow{MI}} = \overrightarrow{MA} + \overrightarrow{MB}$
Dans un repère (O, \vec{i}, \vec{j}) , on a : $\vec{u} = 3\vec{i} - 4\vec{j}$ et $\vec{v} = 2\vec{i} + 9\vec{j}$ on pose $\vec{w} = 4\vec{u} - \vec{v}$. Les coordonnées de \vec{w} sont :	$\square\binom{10}{-25}$	$\square\binom{5}{-17}$	$\square\binom{10}{-7}$
Dans un repère (O, \vec{i}, \vec{j}) , on a : $A(\sqrt{2}, -\sqrt{3})$,			
$B\left(\frac{1}{3}, \frac{1}{6}\right)$ et $C\left(-2, -\sqrt{3}\right)$. Les coordonnées de $\overline{AB} + \overline{AC}$ sont :	$\Box \begin{pmatrix} -2\sqrt{2} - \frac{5}{3} \\ \sqrt{3} + \frac{1}{6} \end{pmatrix}$	$\square \begin{pmatrix} 2\sqrt{2} + \frac{5}{3} \\ -\sqrt{3} - \frac{1}{6} \end{pmatrix}$	$\square \begin{pmatrix} -2\sqrt{2} - \frac{5}{3} \\ -\sqrt{3} - \frac{1}{6} \end{pmatrix}$

Exercice n°3: Soit un rectangle ABCD tel que AB = 8 et BC = 6 (centimètre). Soit un point M du côté AB distinct de A. La droite AB coupe AB coupe AB on pose AB = AB

- 1) Calculer la distance BN en fonction de x.
- 2) Chercher x sachant que $BN \ge 2$.

Exercice n°4: Soit (O, \vec{i}, \vec{j}) un repère cartésien du plan, on considère les points

$$A(-1,2)etB(2,-2)$$

- 1) Montrer que les pointsO, A et B ne sont pas alignés.
- 2) La parallèle à (OA) passant par B coupe l'axe des ordonnées au point K.

Déterminer les coordonnées du point K.

Série 1 d'exercices 2^{ème} sciences (Géamétrie)

- 3) Soit les vecteurs $\vec{u} = 4\vec{i} 4\vec{j}$ et $\vec{v} = \vec{u} \overrightarrow{AB}$
- a-Déterminer les composantes du vecteur \vec{v} dans la base (\vec{i}, \vec{j}) .

b- Vérifier que : $(\overrightarrow{OA}, \overrightarrow{OB})$ est une base et déterminer les composantes du vecteur \overrightarrow{v} dans cette base.

Exercice $n^{\circ}5$: Soit ABC un triangle et I le milieu du segment AB et J le point défini par :

$$\overrightarrow{JA} + \overrightarrow{JB} + 2\overrightarrow{JC} = \overrightarrow{0}$$

- 1) Montrer que pour tout point M du plan on a : $\overrightarrow{MA} + \overrightarrow{MB} + 2\overrightarrow{MC} = 4\overrightarrow{MJ}$.
- 2) Montrer que : $\overrightarrow{JI} + \overrightarrow{JC} = \overrightarrow{0}$ puis construire le point J.
- 3) Exprimer \overrightarrow{AJ} en fonction de \overrightarrow{AB} et \overrightarrow{AC}
- 4) Soit K le point défini par : $\overrightarrow{BK} = \overrightarrow{BC} \frac{1}{2} \overrightarrow{AB}$. Montrer que J est le milieu de [BK].
- 5) Soit le point L tel que : $\overrightarrow{LB} + 2\overrightarrow{LK} = \overrightarrow{0}$.
- a-Exprimer le vecteur \overline{BL} en fonction de \overline{BK} .
- b-Montrer que $\overrightarrow{LA} + 2\overrightarrow{LC} = \overrightarrow{0}$ puis déduire que les points L, A et C sont alignés.
- c- Placer alors le point L.

Exercice n°6: Soit (O, \vec{i}, \vec{j}) un repère cartésien du plan, on considère les points

$$A(2,0), B(4,2)$$
 et $C(-1,3)$

- 1) Montrer que les points A, B et C ne sont pas alignés.
- 2) Déterminer les coordonnées des points suivants :
- G le centre de gravité du triangle ABC, le point F pour que ABFC soit un parallélogramme et le point D tel que $\overline{AD} = -\frac{1}{2}\overline{AB}$.
- 3) Soit le vecteur $\vec{u} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$ dans la base $(\overrightarrow{AB}, \overrightarrow{AC})$; Déterminer les composantes du vecteur \vec{u} dans la base (\vec{i}, \vec{j}) .

Exercice n°7: Soit B = (\vec{i}, \vec{j}) une base de l'ensemble des vecteurs du plan ; on considère les

vecteurs:
$$\vec{u} = (m-1)\vec{i} + (3-2m)\vec{j}$$
 et $\vec{v} = -2\vec{i} + m\vec{j}$. $(m \in \Box)$

- 1) Déterminer les réels m pour que \vec{u} et \vec{v} soient colinéaires.
- 2) On prend m = 4.
- a- Vérifier que B' = (\vec{u}, \vec{v}) est une base puis
- b-Exprimer les vecteurs \vec{i} et \vec{j} en fonction de \vec{u} et \vec{v} .
- c-Soit $\overrightarrow{w} = 2\overrightarrow{i} \overrightarrow{j}$. Déterminer les composantes de \overrightarrow{w} dans la base B.