Lycée Chebbi

Devoir de contrôle n° 2 Sciences physiques

Prof:K,ATEF

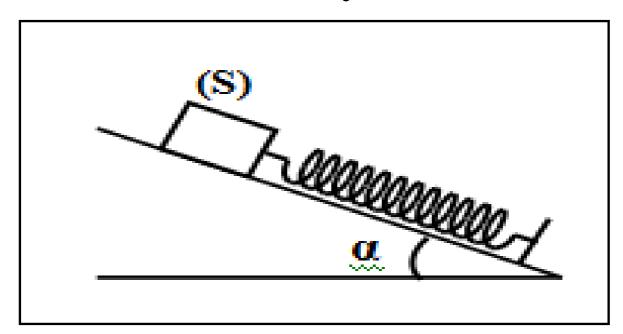
2SC:1,2

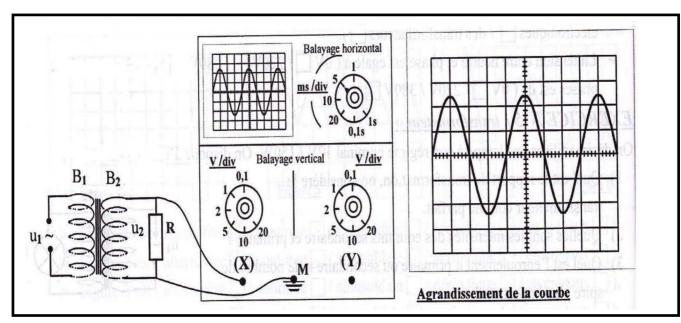
Chimie

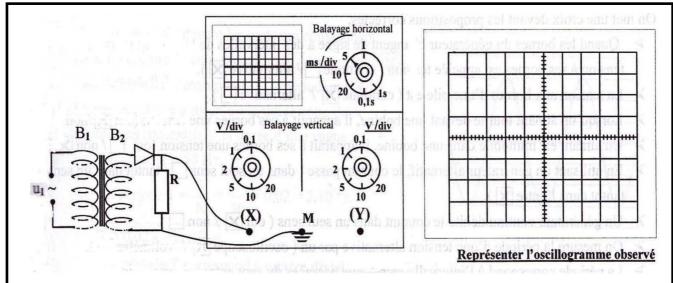
Exercice n°1 (8 points)

On considère un électrolyte de formule AB_2 est un composé très soluble dans l'eau et sa dissolution s'accompagne de son ionisation totale et de la dispersion des ions dans l'eau

Physique		
$\mathcal{M}(O) = 16; \mathcal{M}(\mathcal{H}) = 1; \ \mathcal{M}(\mathcal{N}) = 14; \ \mathcal{M}(\mathcal{A}\mathcal{B}_2) = 127; \ \mathcal{M}(S) = 32$		
On donne en g.mol ¹ : $M(Ag) = 108$; $M(Cl) = 35,5$; $M(Fe) = 56$; $M(H) = 1$;		
5-Déterminer la masse du précipitée obtenu.	C	1
4- Déterminer le réactif en défaut	$\mathcal{A}_2\mathcal{B}$	0.5
3-Ecrire l'équation de la réaction de précipitation	$\mathcal{A}_2\mathcal{B}$	0.5
2- Identifier les anions B et donner la formule de l'électrolyte	\mathcal{A}_2	0.5
V1= 100 mL on obtient un précipitée blanc qui noircit avec la lumière. 1- Donner le nom et la formule de précipitée obtenu	A2B	0.5
solution de nitrate d'argent de concentration $C_3 = 0.2 M$; avec un volume		
III) Pour déterminer la nature des anions an ajoute un volume V_3 =200 m L une	C	1
5. Calculer la masse du précipitée obtenu		1
4. Déterminer le volume V_2 nécessaire à la précipitation de tous les ions A .	<i>A₂</i> B	
3. Identifier les cations A^{2^+}	\mathcal{A}_2	0.25
2. Quelle est le nom du précipité formé? Donner sa formule	\mathcal{A}_2	0.5
Il se forme un précipité de couleur vert 1. Ecrire l'équation de la précipitation.	$\mathcal{A}_2\mathcal{B}$	0.25
d'hydroxyde de sodium (NaOH) de volume V_2 et de concentration C_2 =0,4M.		
II) On prélève un volume V_1 =100mL cette solution (S_1) une solution (S_2)		
cette solution.		
3. En déduire les molarités des ions A^{2+} et B^- et des cations présents dans	A_2B	0.5
2. Calculer la concentration molaire C_1 de la solution (S_1) .	A_2B	0.5
1. Ecrire l'équation d'ionisation de l'électrolyte dans l'eau.	A_2B	1
l'électrolyte AB_2 dans l'eau.		
l'eau. I) On prépare une solution (S_1) de volume 200m \mathcal{L} en dissolvant 2,6 \mathcal{G} de		


Exercice n° 1: (5points)


On alimente le primaire d'un transformateur, dont le rapport de transformation est $n = 5.10^{-2}$, par une tension de valeur efficace $U_1 = 170 \text{ V}$. Le secondaire délivre une tension u_2 représentée ci-dessous à l'écran d'un oscilloscope. L'enroulement secondaire comporte $\mathcal{N}_2 = 120$ spires. On prendra $\sqrt{2} = 1,414$



		$\overline{}$
1) a) Déterminer le nombre de spires N_1 de l'enroulement primaire.	$\mathcal{A}_2\mathcal{B}$	0.5
6) Quelle est la valeur de la tension \mathcal{U}_2 mesurée par un voltmètre branché aux bornes du secondaire ?	$\mathcal{A}_2\mathcal{B}$	0.5
c) En déduire la tension maximale de la tension u_2 aux bornes du secondaire.	$\mathcal{A}_2\mathcal{B}$	0.5
d) Déterminer la sensibilité verticale de la voie utilisée sur l'oscilloscope.	С	0.5
2) a) Le courant circule-t-il dans le résistor dans un seul sens ou de part et d'autre ? Justifier.	\mathcal{A}_2	0.5
6) Déterminer la période T et la fréquence N de cette tension.	\mathcal{A}_2	0.5
3) On donne la représentation du montage suivant :		
a) Le courant circule-t-il dans le résistor dans un seul sens ou de part et d'autre ? Justifier.	\mathcal{A}_2	0.25
b) Représenter la forme de la tension, aux bornes du résistor, observée à l'écran de l'oscilloscope.	В	0.75
c) Quelle est la nature de la tension observée aux bornes du résistor?	$\mathcal{A}_2\mathcal{B}$	0.25
d) Quelles sont la période T et la fréquence $\mathbb N$ de la tension aux bornes du résistor ?	$\mathcal{A}_2\mathcal{B}$	0.75
Exercice n° 2: (07 Points)		
On donne: $\ \overrightarrow{g}\ = 10 \mathcal{N}.\mathcal{K}g^{-1}$		
On considère un solide (S) lié a un ressort de raideur $K = 10 \text{ N.m}^{-1}$ est		
maintenu en équilibre sur un plan incliné d'un angle $\alpha = 30^\circ$ avec		
l'horizontale. Voir figure ci-contre. Sachant que les frottements du plan incliné sont négligeables.		
1- Représenter les forces qui s'exercent sur le solide (S).	$\mathcal{A}_2\mathcal{B}$	1
2- Déduire la condition d'équilibre du solide (S).	A_2	0.5
3-En projetant la condition d'équilibre sur un système d'axe bien choisi	A₂B	1.5
déterminer la valeur du poids $\ \vec{P}\ $ du solide (S) en fonction de la valeur	722	
de la tension du ressort $\ \overrightarrow{T} \ $ et de l'angle \pmb{lpha} .		
4- Sachant que la compression du ressort est $\Delta l = 10 \text{ cm}$.		
a- Calculer la masse de se solide.	B	0.5
6- Déterminer la valeur de la réaction du plan incliné.	B	0.5
c - Déterminer l'angle $oldsymbol{lpha}'$ pour que $\ \overrightarrow{T} \ = \ \overrightarrow{P} \ $	c	0.75
5-a- En réalité les frottements ne sont pas négligeables et la valeur de la	A₂B	1
tension $\ \overrightarrow{T'}\ = 0.6N$. Par application de la condition d'équilibre déterminer	3-2-	1
la valeur de la force de frottement $\ \vec{f} \ $.		
6 -Déterminer la valeur de la réaction $\ \overrightarrow{R_N}\ $ et déduire la valeur de $\ \overrightarrow{R}\ $	$\mathcal{A}_2\mathcal{B}$	0.5
c -Déterminer l'angle eta qui fait la réaction $ec{R}$ avec l'horizontale	С	0.75
		レノ

Nom......Classe......Classe....

