Lycée Benguardène

Prof: Labiadh F

Devoir de controle n°: 1

 $2Sc_3$

Mathématiques Durée: 45 mn

Exercice 1: (7 points)

1/ Soit les deux réels x et y tels que : $x = \sqrt{2}(1-3\sqrt{2}) + 2\sqrt{3}(\sqrt{3} + \frac{1}{2})$ et $y = |\sqrt{3}-1| + |\sqrt{2}-5| - 4$.

a/ Montrer que $x = \sqrt{3} + \sqrt{2}$ et $y = \sqrt{3} - \sqrt{2}$

b/ En déduire que x est l'inverse de y puis que $\sqrt{\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}} = \sqrt{3} + \sqrt{2}$.

c/ Calculer x^2 et y^2 . En déduire que $\frac{x}{v} + \frac{y}{x} = 10$.

2/ a/ Montrer que : $\sqrt{2} = 1 + \frac{1}{1 + \sqrt{2}}$.

b/ En déduire la simplification de $A=1+\frac{1}{2+\frac{1}{2+\frac{1}{1+\sqrt{2}}}}$.

Exercice 2: (4 points)

1/ Vérifier que pour tout entier naturel non nul k, on a : $\frac{1}{k} - \frac{1}{k+1} = \frac{1}{k(k+1)}$.

2/ Soit $n \in \mathbb{N}^*$, on pose $B = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{n(n+1)}$.

a/ Simplifier l'expression B .

b/ Déterminer le plus petit entier naturel n tel que $B \ge \frac{96875}{100000}$

Exercice 3: (9 points)

Soit $B = (\vec{i}, \vec{j})$ une base orthonormée de l'ensemble des vecteurs du plan .

1/ Soient $\vec{u} = \frac{1}{2}\vec{i} + \frac{\sqrt{3}}{2}\vec{j}$ et $\vec{v} = \frac{\sqrt{3}}{2}\vec{i} - \frac{1}{2}\vec{j}$.

Montrer que $\vec{B'} = (\vec{u}, \vec{v})$ est une base orthonormée de l'ensemble des vecteurs du plan .

2/ Soit R = (O, \vec{i}, \vec{j}) un repère orthonormé du plan .

On donne les points A(-2;1); B(3;-2); C(6;3) et $D(4;\frac{5}{2})$.

a/ Montrer que \overrightarrow{AB} et \overrightarrow{BC} sont orthogonaux.

b/ Montrer que les points A; C et D sont alignés.

c/ Calculer les distances AB et BC et en déduire l'aire du triangle ABC.

3/ a/ Vérifier que pour tout réel x, on a : $x^2 + x - 2 = (x-1)(x+2)$.

b/ En déduire les valeurs du réel m pour que les vecteurs $\overrightarrow{w} \binom{m-3}{5}$ et $\overrightarrow{w'} \binom{-2}{m+4}$ soient colinéaires.