LYCEE MARETH

A.S:2011/2012

0.5

0.5

0.5 0.5

1

1

0.5

0.5

5

 A_2

 A_1

 A_2

В

 A_2

С

В

Prof: Mesrati.A

DEVOIR DE CONTRÔLE N°2

SCIENCES PHYSIQUES

Date: 7-02-2012

Durée: 1h

Classe: 2ème SC₃

CHIMIE (6pts)

Exercice 1: [QCM]

Répondre par "vrai" ou "faux" :

- a) La polarité d'une liaison est due à une différence d'électronégativité des atomes.
- b) L'électronégativité augmente avec l'augmentation de nombre de neutrons.
- c) Plus qu'un électrolyte est soluble dans l'eau, plus qu'il est fort.
- d) La précipitation des électrolytes dépend de leurs concentrations.

Exercice 2

A 20°C la solubilité de carbonate de lithium est 0,18 mol.L⁻¹.On prépare à 20°C une solution aqueuse en introduisant 3,1g de carbonate de lithium dans l'eau pour obtenir 250mL de solution.

- 1- Donner la formule chimique de carbonate de lithium sachant qu'il est formé des ions lithium (Li⁺) et des ions carbonate (CO₃²⁻).
- 2- Calculer en g.L⁻¹ la solubilité S₁ de cet électrolyte.
- 3- Dire si la solution préparée est saturée ou non.
- 4- On chauffe la solution précédente jusqu'à la température 40°C. Un dépôt solide de masse 0,4g apparaît :
 - a) Quel est l'effet de la température sur la solubilité de carbonate de lithium ?
 - b) Calculer la valeur de la solubilité S₂ à 40°C

On donne la masse molaire de carbonate de lithium : M=74g.mol⁻¹

PHYSIQUE (14pts)

Exercice N°1

On donne les oscillographes des tensions électriques suivantes :

Reproduire et compléter le tableau suivant en cochant la case correspondante:

tension	U ₁	U_2	U ₃	U ₄	U ₅	u ₆
variable						
Périodique						
Alternative						
Sinusoïdale						

A₁ 2 B 1,5 B 1,5 B 2

В

Exercice N°2

On considère un transformateur supposé idéal alimenté par un GBF délivrant une tension sinusoïdale de fréquence 50Hz. A la sortie de ce transformateur, on branche un résistor de résistance $R=100\Omega$ dont la tension à ses bornes est $U_2=6V$

- U_1 U_2 R
- 1- Quelle est la forme et la fréquence de la tension de sortie ? Justifier.
- 2- Déterminer l'intensité de courant efficace qui circule à la sortie.
- 3- Sachant que l'intensité de courant dans le primaire est I₁=15mA, calculer la valeur efficace de la tension délivrée par le GBF.
- 4- Calculer le rapport de transformation en tension et déduire le type de ce transformateur.
- 5- Calculer l'amplitude et la période de la tension donnée par le GBF.

