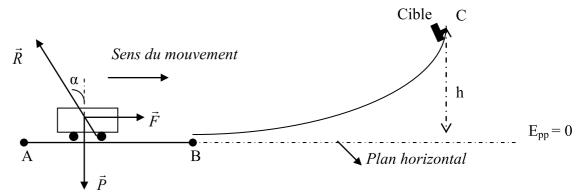
Exercice n° 1:


I-

1- Définir les termes suivants :

- **a-** Energie cinétique **E**_C.
- **b-** Energie potentielle de pesanteur **E**_{pp}
- 2- Citer les facteurs dont dépend chaque forme et d'énergie.

II-

Un jeu consiste à pousser, le plus fort possible, un chariot se déplaçant sur des rails, a fin qu'il atteigne une cible placé au point **C** à la hauteur **h**.

Sur la partie horizontale AB, le joueur exerce sur le chariot une force constante

$$ec{F}$$
 parallèle

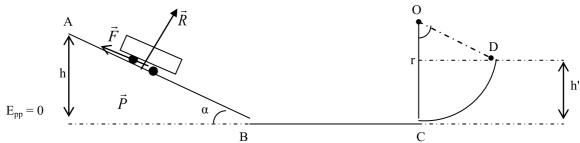
et de même sens que le vecteur déplacement AB . Le mouvement se fait avec frottement.

On donne $\alpha = 30^{\circ}$

AB = 1m.

 $\left\| \vec{F} \right\| = 120N \qquad \left\| \vec{R} \right\| = 10N$

 $E_{pp} = 0$ au niveau du plan horizontale.


- 1- a- Calculer le travail W de chacune des forces au cours du déplacement de A vers B. Justifier.
 - **b-** Déduire la nature de chaque force.
- 2- a- Donner les différentes formes d'énergie que possède le chariot au cours de son déplacement.
 - de A vers B. de B vers C. justifier la réponse.
- b- Comment varie chaque quantité d'énergie au cours du déplacement de B vers C. Conclure.

Exercice n° 2

On donne : $\|\vec{g}\| = 10N.kg^{-1} \sin 30^{\circ} = 0.5$ cos 60° = 0.5

Un chariot de masse m = 1kg se déplace le long d'une piste ABCD

La piste comporte :

- Une partie rectiligne de longueur AB = 2m faisant avec l'horizontale un angle $\alpha = 30^\circ$.
- Une partie rectiligne et horizontale de longueur **BC = 3m**.
- Une partie circulaire de rayon **r = 1m**.
- I- Au cours de son déplacement le chariot est soumis à l'action d'une force de frottement \vec{F}

constamment opposée au déplacement d'intensité $\|\vec{F}\| = 1.23N$

- 1- Exprimer la hauteur h en fonction de AB et α . Faire le calcule.
- **2- a-** Donner l'expression du travail du poids \vec{P} dans chaque partie de la piste :

 $W_{A \rightarrow B} (\vec{P})$; $W_{B \rightarrow C} (\vec{P})$; $W_{C \rightarrow D} (\vec{P})$. Faire le calcul

b- Déduire la nature du travail $\mathbf{W}\Big(\vec{P}\Big)$ (moteur ou résistant) dans chaque partie. Justifier.

3- a- Calculer les travaux $\mathbf{W}_{\mathbf{A} \rightarrow \mathbf{B}} \left(\vec{R} \right)$ et $\mathbf{W}_{\mathbf{A} \rightarrow \mathbf{B}} \left(\vec{F} \right)$

b- Donner la nature de chaque force (motrice ou résistante).

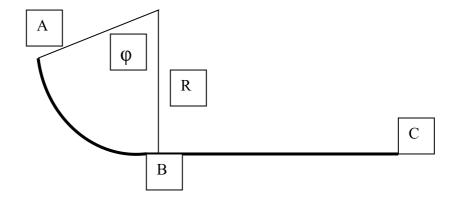
II- Sachant que le chariot part du point A avec une vitesse non nulle pour atteindre le point **D**

avec une vitesse nulle (V = 0)

- **1-** Donner les différentes formes d'énergies que passé de le chariot au cours de son déplacement.
 - o de A vers B.
 - o de B vers C.
 - o de C vers D.
- **2-** Comment varie chaque formes d'énergie dans ces différentes parties, citer le transformations d'énergie.

Exercice n° 3

Une luge de masse m descend une piste ayant la forme ci-contre. La luge part du point A, descend la piste circulaire déterminée par le rayon R et l'angle α


 $0 < \phi < 90^{\circ}$

et poursuit sa route sur le plan horizontal avec forces de frottement de norme constante.

1-a-exprimer le travail du poids de la luge en fonction m lIgII R et ϕ

b- Calculer le travail du poids de la luge

2- déterminer la longueur du trajet BC. On donne W(f) de B vers C : (-625 J)

