Série nº 13

(Solutions aqueuses d'acide et de base – Mouvement de rotation – Théorème des moments)

Exercice n° 1:

- 1) Donner la définition d'un acide.
- 2) On considère une solution aqueuse (S_1) d'acide nitrique (HNO_3) de concentration molaire $C_1 = 0,4$ mol.L⁻¹ et de volume $V_1 = 0,1$ L.
 - a. Ecrire l'équation d'ionisation de l'acide nitrique dans l'eau.
 - **b.** Calculer la molarité des ions H_3O^+ se trouvant dans la solution (S_1) .
- 3) On fait réagir un échantillon de cette solution avec une solution d'hydroxyde de potassium (KOH).
 - a. Ecrire l'équation d'ionisation de l'hydroxyde de potassium dans l'eau.
 - **b.** Comment appelle-t-on une telle solution? Justifier.
 - c. Ecrire l'équation qui a lieu entre la solution de KOH et celle de HNO₃.
- 4) A un volume $V_0 = 0.05$ L de la solution (S_1) , on ajoute une masse m = 3 g de carbonate de calcium.
 - a. Ecrire l'équation de la réaction qui a lieu.
 - **b.** Lequel des réactifs de cette réaction est en excès ? Justifier.
 - c. Calculer le volume du gaz formé.
 - d. Déterminer la molarité des ions Ca²⁺ se obtenus suite à cette réaction.
- e. Déterminer la masse du réactif qui n'a pas réagi.

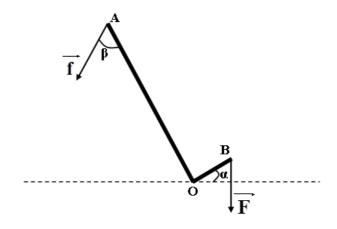
On donne : $V_m = 24 \text{ L.mol}^{-1}$ et $M(CaCO_3) = 100 \text{ g.mol}^{-1}$.

Exercice n° 2:

- 1) Donner la définition d'une base.
- 2) On désire préparer une solution aqueuse (S_1) de soude (NaOH) de molarité $C_1 = 0.4$ M et de volume $V_1 = 300 \text{ cm}^3$
 - Déterminer la masse de soude qu'il faut dissoudre dans l'eau pour préparer la solution (S₁).
- 3) On prélève un volume $V_0 = 50$ cm³ de la solution (S_1) auquel on ajoute un volume V' d'eau. On obtient une solution (S'_1) de molarité $C'_1 = 0.05$ M.
 - Déterminer le volume V' d'eau ajouté.
- 4) Au volume restant de la solution (S_1) , on ajoute un volume $V_2 = 50$ cm³ d'une solution (S_2) d'hydroxyde de calcium $(Ca(OH)_2)$ de molarité $C_2 = 1,6$ M.
 - **a.** Ecrire l'équation de la dissociation ionique de la soude et celle de l'hydroxyde de calcium dans l'eau.
 - **b.** Déterminer la molarité des ions présents dans le mélange.

Exercice n° 3:

Ali et Selim vont faire un tour de manège sur des chevaux de bois. Ali monte sur un cheval situé à une distance $\mathbf{R}_1 = \mathbf{2.5}$ m de l'axe de rotation, quant à Selim, il monte sur un cheval situé à une distance $\mathbf{R}_2 = \mathbf{4}$ m de cet axe. On suppose que le plateau du manège est en mouvement circulaire uniforme.


- 1) Le plateau effectue N = 12 tours pendant une durée t = 64,2 s. Quelle est la vitesse angulaire du plateau exprimée en rad.s⁻¹.
- 2) Le manège tourne pendant une durée $\Delta t = 2 \min 30 \text{ s}$. Calculer les longueurs s_1 et s_2 des arcs de trajectoires parcourues par Ali et Selim.
- 3) Quelles sont les vitesses curvilignes V_1 et V_2 de Ali et Selim?

Exercice n° 4:

Un arrache clou (S) de masse $\mathbf{m} = 2$ kg est constitué par deux tiges rigides : $\mathbf{OA} = \mathbf{L}$ et $\mathbf{OB} = \frac{\mathbf{L}}{5}$,

soudée au point O de façon qu'elles soient perpendiculaires. (S) est mobile autour d'un axe (Δ) perpendiculaire au plan de la figure et passant par le point d'appui O. Le centre de gravité G du système est situé à une distance $OG = \frac{L}{5}$.

Pour arracher un clou, un opérateur exerce une force \overrightarrow{f} à l'extrémité A, inclinée d'un angle $\beta = 45^{\circ}$ par rapport à OA. La tige OB est alors inclinée d'un angle $\alpha = 30^{\circ}$ par rapport à l'horizontale. Le clou exerce une force \overrightarrow{F} supposée verticale et de valeur $\|\overrightarrow{F}\| = 200 \text{ N}$, comme l'indique la figure ci-contre.

- 1) En appliquant le théorème des moments,
 - a. Déterminer l'expression de la valeur de la force $\overrightarrow{\mathbf{f}}$ exercée par l'opérateur en fonction de \mathbf{m} , $\|\overrightarrow{\mathbf{g}}\|$, $\|\overrightarrow{\mathbf{F}}\|$, α et β .
- **b.** Calculer $\|\overrightarrow{\mathbf{f}}\|$.
- 2) L'opérateur souhaite exercer le minimum d'effort pour arracher le clou. Préciser les paramètres sur lesquels il doit agir pour aboutir à ce résultat.

