Série n° 7

(Composés ioniques – Schéma de Lewis – Classification périodique – Loi d'Ohm)

Exercice n° 1:

L'atome de chlore (Cl) a pour numéro atomique Z = 17.

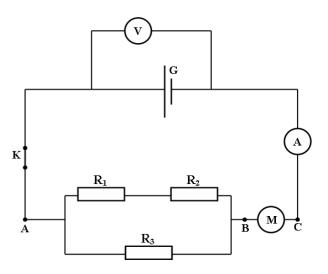
L'atome de magnésium (Mg) possède deux électrons sur sa couche externe M.

- 1) Donner les structures électroniques sur les diverses couches de ces deux atomes.
- 2) Expliquer la formation des ions simples que peuvent donner les atomes Cl et Mg pour satisfaire la règle de l'octet.
- 3) Donner les symboles de ces ions.
- 4) Le chlorure de magnésium est un composé ionique formé d'ions magnésiums et d'ions chlorures. Donner sa formule.

Exercice n° 2:

1) Compléter le tableau suivant par ce qui convient.

Symbole du noyau	¹⁹ F	Ne	₁₅ P	³⁵ Cl
Numéro du groupe dans le tableau périodique		VIII		
Numéro de la période dans le tableau périodique		2		
Nombre de neutrons		10	16	18
Formule électronique	$(K)^2 (L)^7$			
Schéma de Lewis				
Nombre de liaisons covalentes				


- 2) Dégager du tableau les éléments chimiques appartenant à la même famille. Quel est le nom de cette famille ?
- 3) Donner le schéma de Lewis des molécules suivantes : F₂ et PF₃.
- 4) a. Définir l'électronégativité.
 - b. Classer les trois atomes P, F et Cl par ordre d'électronégativité croissante.
- c. Placer, s'il y a lieu, les fractions de charges (les charges partielles) sur chaque atome dans les deux molécules F_2 et PF_3 .
 - d. Déduire la nature des liaisons (liaison polaire ou non polaire) dans ces deux molécules.

Exercice n° 3:

On considère le circuit électrique ci-contre :

- **G**: un générateur de force électromotrice **E** = **12 V** et de résistance interne **r**.
- M : un moteur de force contre électromotrice E' et de résistance interne r'.
- Trois résistors de résistances respectives R_1 , R_2 et R_3 tels que : $R_1 = R_2 = 5\Omega$ et $R_3 = 3R_1$.
- **K**: un interrupteur.
- (A): un ampèremètre
- (V) : un voltmètre.

- **A.** L'interrupteur **K** est ouvert, quelles sont les indications :
 - 1) Du voltmètre?
 - 2) De l'ampèremètre?
- B. L'interrupteur K est fermé.
- I. Le moteur est bloqué, l'ampèremètre indique $I_1 = 1A$ et le voltmètre indique $U_1 = 8V$.
- 1) a. Calculer la résistance interne r du générateur.
- b. Calculer l'énergie électrique E_e reçue par le dipôle vue entre les points A et C du circuit pendant deux minutes.
 - c. Quelle est la nature de cette énergie. Justifier.
 - 2) a. Calculer la résistance équivalente R_{eq} vue entre les points A et C.
 - **b.** Montrer que la résistance équivalente vue entre les points **A** et **B** est : $\mathbf{R} = (\frac{6}{5}) \mathbf{R}_1$.
 - c. En déduire la résistance interne r' du moteur.
 - 3) On prendra $\mathbf{r}' = 2\Omega$. Calculer:
 - a. La tension U_3 aux bornes du résistor R_3 .
 - b. La puissance électrique P_3 dissipée par effet joule dans la résistance R_3 .
- II. Le moteur fonctionne normalement, l'ampèremètre indique I' = 0.8A. Calculer :
 - 1) La tension aux bornes du générateur U_G.
 - 2) La tension aux bornes du moteur $U_{M^{\bullet}}$ Déduire sa fcem E'.
 - 3) La puissance dissipée par effet joule dans le moteur $P_{\rm J}.$
 - 4) La puissance électrique totale reçue par le moteur P_{M} .
 - 5) Le rendement ρ de ce moteur.

