Lycée ch -khaznadar Teboursouk Prof: Rakrouki .M

Devoir de Controle n°1

Classe: 3^{ème} Math **Durée: 120 minutes**

Date: 10/11/10

Une grande importance sera attachée à la clarté de la rédaction et au soin de la présentation

EXERCICE 1 (3pts):

Cocher la réponse exacte :

1) Soit fune fonction définie sur $IR \setminus \{2\}$ et telle que $\lim_{x \to 1^+} f(x) = -2$ et $\lim_{x \to 1^-} f(x) = -2$ alors :

f est prolongeable par continuité en 1 \square , f est continue en 1 \square , f(1) = -2 \square

2) Si \vec{u} et \vec{v} deux vecteurs colinéaires et de sens contraires de norme respectives 3 et 5 alors $(\vec{u} - 2\vec{v})^2$ est égal

169 109 49

Dans le plan muni d'un repère orthogonal, Cf est la courbe représentative de la fonction f définie sur $\left| -\sqrt{2};+\infty \right|$. Répondre par vrai ou faux.

a) f(2) = 1 ; b) $\lim_{x \to 2^+} f(x) = 4$.

c) Le domaine de continuité de f est $IR \setminus \{2\}$.

d) 4 est le maximum de f sur D_f.

e) Pour tout $x \in \left[-\sqrt{2}; 2\right]$ on $a: 2 \le f(x) \le 4$.

f) $f([-\sqrt{2};3]) = [0;4]$.

EXERCICE2 (6pts):

Soit f la fonction définie par : $f(x) = \frac{\sqrt{x+4}-2}{2x}$ si $x \ne 0$ et $f(0) = \frac{1}{8}$.

1)a)Déterminer le domaine de définition Df de f.

b) Calculer $\lim_{x\to 0} f(x)$ puis déduire que f est continue en 0.

2)a) Montrer que f est continue sur $\left[-4;+\infty\right[$. b) Montrer que f(- 4) est un maximum de f sur $\left[-4;+\infty\right[$.

c) Montrer que f est bornée sur $[-4; +\infty]$.

3)a) Montrer que l'équation f(x) = x - 3 admet au moins une solution α dans l'intervalle $\left| \frac{9}{4}; 5 \right|$.

b) Déterminer une valeur approcher de α à 10⁻¹ près.

4) Soit g la fonction définie sur IR par : $g(x) = \begin{cases} f(x) & \text{si } x \in]0; +\infty[\\ \frac{-x^3 + 4x^2 - x - 6}{x + 1} & \text{si } x \in]-\infty; 0] \setminus \{-1\} \\ a & \text{si } x = -1 & (a \in IR) \end{cases}$

a) Etudier la continuité de g en 0. La fonction g est-elle continue en 0?

b) Calculer a pour que g soit continue en - 1.

c) On prend a = 10. Déterminer le domaine de continuité de g. (expliquer)

EXERCICE3(7pts):

Soit ABCD un carré tel que AB = 3. On désigne par E le symétrique de C par rapport à B et par J le point du segment [DC] tel que CJ = 1 et par K le point du segment [BE] tel que EK = CJ.

1)Montrer que $\overrightarrow{AD}.\overrightarrow{AK} = -6$ et $\overrightarrow{JD}.\overrightarrow{AK} = -6$ puis déduire que $(AJ) \perp (AK)$.

2)a) Calculer KD et KJ.

b) Calculer $\cos(DKJ)$ puis déduire que $\overrightarrow{KJ}.\overrightarrow{KD} = 28$.

3)a) Soit I le milieu de [JK]. Montrer que $DI = \frac{5\sqrt{2}}{2}$.

b) Soit $\zeta = \{M \in P / \overrightarrow{MJ}.\overrightarrow{MK} = 6\}$. Montrer que ζ est le cercle de centre I et de rayon DI.

4)a) Vérifier que D est le barycentre des points pondérés (J, 3) et (C, -2).

b) Soit
$$f(M) = 3MJ^2 - 2MC^2$$
 et $g(M) = f(M) - MC^2$ et $H = D * C$.

Montrer que $f(M) = MD^2 - 6$ et $g(M) = 2\overrightarrow{MH}.\overrightarrow{CD} - 6$.

c) Déterminer les ensembles suivants : $\zeta' = \{M \in P \mid f(M) = 3\}$ et $\Delta = \{M \in P \mid g(M) = -6\}$.

EXERCICE4(4pts):

Dans le plan orienté on considère un triangle EFG isocèle en E tel que $(\overrightarrow{EG},\overrightarrow{FE}) \equiv -\frac{35\pi}{3} [2\pi]$.

1)a)Montrer que $(\overrightarrow{EF}, \overrightarrow{EG}) \equiv \frac{2\pi}{3} [2\pi]$ puis construire le triangle EFG.

b) Donner la mesure principale de $(\overrightarrow{FE}, \overrightarrow{FG})$.

2) Soit A = F * G et B le point de (EA) tel que $(\overrightarrow{FE}, \overrightarrow{FB}) = \frac{3\pi}{2} [2\pi]$. Placer le point B.

3)a) Déterminer la mesure principale de $(\overrightarrow{FB}, \overrightarrow{FG})$ puis déduire la nature du triangle FBG (justifier).

b) Donner la mesure principale de chacun des angles orientés suivants :

$$(\overrightarrow{EG},\overrightarrow{FB})$$
 , $(\overrightarrow{EA},\overrightarrow{BG})$ et $(\overrightarrow{EB},\overrightarrow{FG})$.

BON TRAVAIL