

Contrôle N°1

3^{ème} M₃

MATHEMATIQUES

12 Novembre 2011

Durée = 2h

Exercice N°1 (3 points) QCM

Pour chaque question, une seule des trois propositions est exacte. Indiquer sur la copie le numéro de la question et la lettre correspondant à la réponse choisie. Avec justification.

1. Si ABCD est un carre de coté a > 0 alors $\overrightarrow{DC}.\overrightarrow{BD} =$

$$a) - a^2$$

b) $a\sqrt{2}$

- **c)** $a\sqrt{2}$
- 2. Si \vec{u} et \vec{v} deux vecteurs colinéaires, de sens contraire, $\|\vec{u}\| = 2$ et $\|\vec{v}\| = 1$, alors $(\vec{u} + 3\vec{v})^2 = 1$
 - a) 25

b) 13

c)

$$3. \quad \lim_{x \to 1} \frac{x^3 - 1}{\sqrt{x} - 1} =$$

a) 6

b) 0

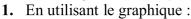
- c)
- **4.** Soit la fonction f définie sur $[1, +\infty[$ par $f(x) = \frac{1}{1+\sqrt{x}}$, on a :
 - a) 0 est un minimum.
- **b)** 1 est un maximum.
- c) f est bornée

Exercice N°2 (7 points)

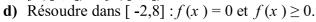
- I). Soit f la fonction définie par $f(x) = \frac{\sqrt{x-1}-1}{x^2-2x}$
 - 1. a) Déterminer l'ensemble de définition de f.
 - **b)** Etudier la continuité de f sur son ensemble de définition.
- 2. Montrer que f est prolongeable par continuité en 2 et donner son prolongement.
- II). Soit la fonction g définie sur IR par $g(x) = \begin{cases} \frac{1}{x(\sqrt{x-1}+1)} & \text{si } x \ge 1\\ \frac{1}{2-x} \sqrt{1-x} & \text{si } x < 1 \end{cases}$
 - 1. Justifier la continuité de g en a = 2 , en b = 0 , sur]- ∞ , 1[et sur]1 , + ∞ [.
 - **2.** a) Montrer que g est strictement décroissante sur $[1; +\infty[$.
 - b) Déduire que g est majorée sur $[1; +\infty[$.
 - 3. Montrer que g est strictement croissante sur] $-\infty$;1[.
 - 4. On admet que g est contiue sur[0,1].
 - a) Montrer que l'équation g(x) = 0 admet une solution unique $\alpha \in [0;1]$.
 - b) Donner un encadrement de α d'amplitude 0,5.
 - c) Donner le signe de g sur IR.
 - d) Vérifier que α vérifie l'équation $\alpha^3 5\alpha^2 + 8\alpha 3 = 0$

Exercice N°3 (4 points)

La courbe (C_f) ci-contre représente une fonction f définie sur [-2,8].



- a) Déterminer f(3) et f(6)
- **b)** Déterminer les intervalles de \mathbb{R} où f est continue.
- c) Déterminer f([-2,2[), f([2,6])) et f([6,8])



2. Soit g la fonction définie par .
$$g(x) = \frac{1}{\sqrt{f(x)}}$$

a) Déterminer l'ensemble de définition de g.

b) Montrer que
$$\frac{g(x)-1}{f(x)-1} = \frac{-g(x)}{\sqrt{f(x)}+1}$$
.

c) En déduire
$$\lim_{x\to 3} \frac{g(x)-1}{f(x)-1}$$
.

Exercice N°4 (6 points)

On considère un triangle ABC tel que AB = a > 0 , AC = 2a et $\widehat{BAC} = \frac{2\pi}{3}$

- 1) Montrer que BC = $a\sqrt{7}$
- 2) Soit G le projeté orthogonal de C sur (AB).
 - a. Calculer $\overrightarrow{AB}.\overrightarrow{AC}$. En déduire AG.
 - b. Montrer que G est le barycentre des points pondérés (A,2) et (B,-1).
- 3) Déterminer l'ensemble C des points M tels que $\frac{MB}{MA} = \sqrt{2}$.
- 4) Déterminer l'ensemble Δ des points M tels que $2\|2\overrightarrow{MA} \overrightarrow{MB}\| = \|\overrightarrow{MA} + \overrightarrow{MB}\|$.
- 5) Déterminer l'ensemble D des points M tels qu $\overline{AAB} = -\frac{a^2}{2}$.