Mathématiques	Devoir de contrôle N°1	
Lycée Takelsa		
Classe :3 ^{ème} Math Date : le 19/11/2015	Durée : 2 h	Prof : Ziadi Mourad

Exercice N:1 (03pts)

Répondre par « Vrai » ou « Faux », en justifiant la réponse .

- 1) Soit ABC un triangle tel que AB = AC = 2 et BC = 3, alors $\overrightarrow{AB} \cdot \overrightarrow{AC} = -\frac{1}{2}$.
- 2) Soit f la fonction définie par : $f(x) = \sqrt{x E(x)}$, avec E(x) est la fonction partie entière, alors le domaine de définition de f est $[0, +\infty[$.
- 3) Soient E et F deux points distincts du plan. L'ensemble des points M tels que $ME^2 = \overrightarrow{ME}.\overrightarrow{FE}$ est le cercle de diamètre [EF].

Exercice N:2 (06pts)

- I) Soit f la fonction définie par $f(x) = \frac{\sqrt{4 + 2x^2} 2}{x}$
- 1) a) Déterminer l'ensemble de définition de f .
 - b) Etudier la continuité de f sur son ensemble de définition.
- 2) Montrer que f est prolongeable par continuité en 0 et donner son prolongement $\mathbf h$.
- 3) a) Montrer que f est une fonction impaire.
 - b) Montrer que f est majorée sur]0, $+\infty[$ par $\sqrt{2}$. En déduire que f minorée sur $]-\infty$, 0[par $-\sqrt{2}$
- II) Soit la fonction g définie sur IR par : $\begin{cases} g(x) = \frac{2x}{\sqrt{2x^2 + 4} + 2} \text{ si } x \le 0 \\ g(x) = x^4 2x^2 & \text{ si } x > 0 \end{cases}$
 - 1) Etudier la continuité de g sur IR .
- 2) a) Vérifier que pour tout $x \in \mathbb{R}$ on a : $x^4 2x^2 = (x^2 1)^2 1$
 - b) En déduire que g est strictement croissante sur $[1;+\infty[$.
- 3) a) Montrer que l'équation g(x) = 4 admet une solution unique $\alpha \in]1,2[$.
 - b) Vérifier que $g(-\alpha) = \frac{2 \alpha^2}{\alpha}$.

Exercice N:3(06pts)

Soit ABC un triangle équilatéral de côté 4 . Soit D le barycentre des points pondérés (A,1), (B,-1) et (C,1).

- 1) Montrer que ABCD est un losange. On notera O son centre.
- 2) Calculer $\overrightarrow{AB} \cdot \overrightarrow{AD}$ et $\overrightarrow{AB} \cdot \overrightarrow{BD}$
- 3) Soit E l'ensemble des points M tels que $MA^2 MB^2 + MC^2 = 0$.
 - a) Montrer que : $MA^2 MB^2 + MC^2 = MD^2 + 2DA^2 DB^2$.
 - b) Déterminer la nature et les éléments caractéristiques de E.
- 4) Soit F l'ensemble des points M tels que $MA^2 2MB^2 + MC^2 = 32$.
 - a) Vérifier que le point B appartient à F.
 - b) Montrer que : $MA^2 2MB^2 + MC^2 = 2\overrightarrow{MA} \cdot (\overrightarrow{AC} 2\overrightarrow{AB}) AB^2$
 - c) Montrer que M est un point de F si et seulement si $\overrightarrow{MA}.\overrightarrow{BD} = 24$.
 - d) Déterminer alors l'ensemble F.

Exercice N:4 (05pts)

Soit ABC un triangle rectangle en B tel que $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv -\frac{59\pi}{6} [2\pi]$; E et F sont les points tels que :

$$\begin{cases} AB = AE \\ (\overrightarrow{AB}, \overrightarrow{AE}) \equiv -\frac{\pi}{2} [2\pi] \end{cases} \text{ et } \begin{cases} AC = AF \\ (\overrightarrow{AC}, \overrightarrow{AF}) \equiv \frac{\pi}{2} [2\pi] \end{cases}$$

- 1) Montrer que la mesure principale de $(\overrightarrow{AB}, \overrightarrow{AC})$ est $\frac{\pi}{6}$.
- 2) Faire une figure.
- 3) Montrer que les triangles ACE et ABF sont isométriques .
- 4) a) Montrer que $(\overrightarrow{CE}, \overrightarrow{BF}) \equiv (\overrightarrow{CE}, \overrightarrow{CA}) + (\overrightarrow{FA}, \overrightarrow{BF}) + \frac{\pi}{2} [2\pi]$. b)En déduire que (CE) et (BF) sont perpendiculaires.
- 5) Calculer la mesure principale de chacun des angles orientés suivants : $(\overrightarrow{FC}, \overrightarrow{AE})$ et $(2\overrightarrow{FA}, -3\overrightarrow{AB})$.

BON TRAVAIL

