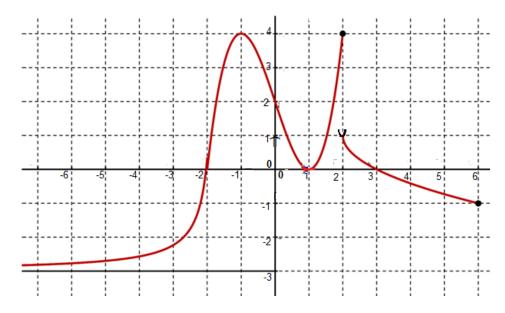
Exercice 1: (6points)

0.000.000.000

- **1.)** 1°) Soient A et B deux points distincts. L'ensemble de points M tels que $MA^2 = \overrightarrow{MA} \cdot \overrightarrow{BA}$ est
 - a) Le cercle de centre A et de rayon BA.
 - b) La droite (AB).
 - c) Le cercle de diamètre [AB]
 - 2°) Soit f la fonction définie par : $f(x) = \frac{x^2}{|x-1|-|x+1|}$
 - i.) L'ensemble de définition de f est :
 - (a) \mathbb{R}^*
- (b) $\mathbb{R} \setminus \{-1,0,1\}$
- (c) [-1;1]\{0}

- ii.) La fonction f est:
 - (a) paire
- (b) impaire
- (c) sans parité
- II.) On considère dans un repère $(0; \vec{i}, \vec{j})$., ci-dessous, la courbe représentative d'une fonction f définie sur $]-\infty$; 6].

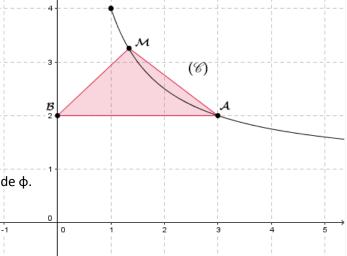


- 1°) Déterminer le domaine de continuité de f.
- 2°) Déterminer $f(]-\infty;2]$).
- 3°) **a.** Résoudre, dans \mathbb{R} , l'inéquation : $f(x) \ge 0$.
 - **b.** En déduire l'ensemble de définition de la fonction g définie par : $g(x) = \frac{1}{\sqrt{f(x)}}$
 - **c.** Montrer que pour tout $x \in]2,3[$, $\frac{g(x)-1}{f(x)-1} = \frac{-g(x)}{\sqrt{f(x)}+1}$
 - **d**. En déduire $\lim_{x\to 2^+} \frac{g(x)-1}{f(x)-1}$

Exercice 2: (7points)

- 1°) Soit g la fonction définie par g(x) = $\frac{x^2 + 2x 3}{x|x 1|}$
 - a. Déterminer l'ensemble de définition de g.
 - **b**. Calculer $\lim_{x\to 1^-} g(x)$ et $\lim_{x\to 1^+} g(x)$.
 - c. g est-elle prolongeable par continuité en 1?
- 2°) Soit f la fonction définie sur [-3, + ∞ [par : $\begin{cases} f(x) = g(x) & \text{si } x \in]1, + \infty[\\ f(x) = \frac{x-1}{-2 + \sqrt{x+3}} & \text{si } x \in [-3,1[\\ f(1) = 4 \end{cases}$
 - a. Montrer que f est continue en 1.
 - **b.** Etudier la continuité de f sur son domaine de définition.
- 3°) Le plan est rapporté à un repère orthonormé $(0; \vec{1}, \vec{j})$. On donne les points A(3,2) et B(0,2). La courbe (C_f) ci-contre représente la restriction de f à l'intervalle $[1,+\infty[$.

Soit φ l'application qui à tout réel $\,x\geq 1,$ associe l'aire du triangle MAB où M est le point de (C_f) d'abscisse x.



- a. Par lecture graphique déterminer le sens de variation de φ.
- **b.** Justifier que $\phi(x) = \frac{3}{2}|f(x) 2|$.

Exercice 3: (7points)

Soit ABC un triangle équilatéral de coté 4.Soit D le barycentre des points pondérés (A,1) , (B,-1) et (C,1).

- 1°) Montrer que ABCD est un losange. On notera O son centre.
- 2°) Calculer \overrightarrow{AB} . \overrightarrow{AD} et \overrightarrow{AB} . \overrightarrow{BD} .
- 3°) Soit E l'ensemble des points M tel que $MA^2 MB^2 + MC^2 = 0$.
 - **a.** Montrer que $\overrightarrow{MA}^2 \overrightarrow{MB}^2 + \overrightarrow{MC}^2 = \overrightarrow{MD}^2 + 2\overrightarrow{DA}^2 \overrightarrow{DB}^2$
 - b. Déterminer la nature et les éléments caractéristiques de E.
- 4°) Soit F l'ensemble des points M tels que $MA^2 2MB^2 + MC^2 = 32$.
 - a. Vérifier que le point f appartient à F.
 - $\textbf{b.} \ \text{Montrer que } \overrightarrow{MA}^2 2\overrightarrow{MB}^2 + \overrightarrow{MC}^2 = 2\overrightarrow{MA}.\left(\overrightarrow{AC} 2\overrightarrow{AB}\right) \overrightarrow{AB}^2.$
 - **c.** Montrer que M est un point de F si et seulement si \overrightarrow{MA} . $\overrightarrow{BD} = 24$.
 - d. Déterminer alors l'ensemble F.