Mathématiques

Devoir de contrôle N° 3:

 $3^{\text{ème}}$ *Maths*: \mathcal{M}_2 Date: le 10 / 05 / 2009

Durée : 2heures Coefficient : 4 Enseignant: M. Ghaddab Lassad

Exercice N°1: (5 points)

(les parties I et II sont indépendantes)

I-

1) Calculer les sommes suivantes :

$$S_1 = 1 + 2C_n^1 + 4C_n^2 + 8C_n^3 + \dots + 2^n C_n^n$$
 et $S_2 = 1 - 2C_n^1 + 4C_n^2 - 8C_n^3 + \dots + (-1)^n \cdot 2^n \cdot C_n^n$

2) En déduire la valeur de :

$$S = 1 + 2^{2}C_{100}^{2} + 2^{4}C_{100}^{4} + \dots + 2^{98}C_{100}^{98} + 2^{100}$$
.

II – Un sac contient 9 jetons repartis comme suit :

4 jetons blancs marqués : 1, 1, 2, 6.

5 jetons rouges marqués : 2, 2, 2, 3, 4.

A – On tire simultanément 3 jetons du sac :

1) Dénombrer tous les tirages possibles.

2) Dénombrer les tirages comprenant :

a) Trois jetons rouges.

b) Au moins un jeton blanc.

c) 3 jetons dont la somme des numéros marqués est égale à 8.

d) Un jeton et un seul blanc et un jeton et un seul portant un numéro multiple de 3.

B - On tire successivement et sans remise 3 jetons du sac :

Dénombrer les tirages dans chacun des cas :

1) Obtenir un seul jeton marqué 2.

2) Le premier jeton tiré porte le numéro 2.

3) Le premier jeton tiré est blanc et le deuxième jeton tiré est marqué 2.

Exercice $\mathcal{N}^{\circ}2:$ (7 points)

(les parties I, II et III sont indépendantes)

I – Montrer par récurrence, que pour tout entier n, $3^{4n+2} + 5^{2n+1}$ est divisible par 7 ?

II –

1) Soit *n* un entier naturel. Montrer que *n* est divisible par 14 si et seulement si *n* est divisible par 2 et par 7.

2) a – Montrer que pour tout entier naturel non nul n, (n-1) divise $n^6 - 1$.

b – A l'aide du petit théorème de Fermat, montrer que n^7 – n est divisible par 14.

3) Déterminer le reste de la division euclidienne de : $3 \times (2009)^7 - 1430$ par 14.

III – Soit *n* un entier naturel.

- 1) On considère les entiers naturels : $x = 4n^2 + 6n + 3$ et y = 2n + 1.
 - a V'erifier que x = 2n(2n+1) + (4n+3).
 - b Montrer que pour tout entier naturel n, les entiers x et y sont premiers entre eux.
- 2) a Montrer que pour tout entier naturel n: $(2n+1) \wedge (6n+21) = (2n+1) \wedge 18$.
 - b Quelles valeurs peuvent prendre le PGCD((2n+1); (6n+21)).
 - c Déterminer l'ensemble des entiers naturels n tels que (2n+1) divise (6n+21).
- 3) En déduire des questions précédentes, l'ensemble des entiers n tels que : (2n+1)(n+1) divise $(6n+21)(4n^2+6n+3)$.

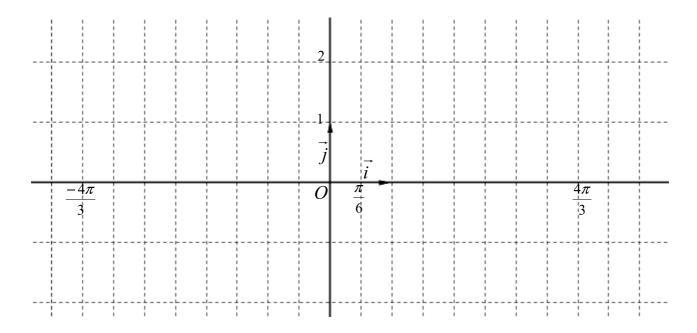
Exercice N°3: (8 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = 2Cos^2x - \sqrt{3}Sin2x - 1$ et (C_f) sa courbe représentative dans le repère orthogonal (O, \vec{i}, \vec{j}) .

- 1) Montrer que pour tout $x \in \mathbb{R}$, $f(x) = 2Cos\left(2x + \frac{\pi}{3}\right)$
- 2) a Montrer que la droite $\Delta : x = \frac{\pi}{3}$ est un axe de symétrie de (C_f)
 - b En déduire que l'on peut réduire l'étude de f à l'intervalle $I = \left[-\frac{\pi}{6}, \frac{\pi}{3} \right]$
- 3) a Calculer f'(x) et dresser le tableau de variation de f sur I.
 - b Construire, sur le graphique (page annexe), la courbe (C_1) de la restriction de f à l'intervalle $\left[-\frac{\pi}{6}, \frac{4\pi}{3}\right]$. (on précisera les points d'intersection avec l'axe des abscisses).
- 4) Soit la fonction g définie $\sup \left[-\frac{4\pi}{3}, \frac{4\pi}{3} \right]$ par $g(x) = 2Cos\left(2|x| + \frac{\pi}{3} \right)$
- $\left(C_{g}\right)$ désigne sa courbe représentative dans le même repère $\left(O,\vec{i},\vec{j}\right)$
 - a Utiliser la courbe (C_1) pour tracer (C_g) .
 - b Résoudre graphiquement l'inéquation $g(x) \ge 1$

		ı
Nom .	Duán am	NIO.
NOIII	Pichom	, IN 1

Exercice3:



<u>Annexe</u>

1	Nom: Prénom:	. N° :	
1			

Exercice3:

