L.Ibn Charaf Ennadhour

Devoir de synthèse n'1

A.S: 2011-2012

P: Horrí Nízar

de mathématiques: Durée 2 h

classe: 3 sc. t.,

Exercice nº1 (4 pts)

Pour chaque question ; trois affirmations sont proposées ; une et une seule est exacte l'élève indiquera sur sa copie le numéro de la question et la lettre correspondant à la réponse choisie .Aucune justification n'est demandée.

- 1) $Cos(\frac{25\pi}{3})$ est égal à :
 - a) $\frac{\pi}{3}$

b) $\frac{-1}{2}$

- c) $\frac{1}{2}$.
- 2) L'équation: $(\cos(x))^2 + 2\cos(x) 3 = 0$ admet dans $\frac{-\pi}{2}$; $\frac{\pi}{2}$
 - a) 0 solution

b) une solution

c) 2 solutions

- 3) $\lim_{x \to +\infty} (\sqrt{x^2 + 2} 2x)$ est égale à
 - a) 0

b) −∞

 $c) + \infty$

- 4) La fonction $f: x \to \begin{cases} x+2 & \text{si } x < 1 \\ 2x-1 & \text{si } x \ge 1 \end{cases}$
 - a) Est continue à gauche en 1
- b) Est continue à droite en 1
- c) admet une limite en 1

Exercice nº2 (6 pts)

On considère les fonctions f; g et h définies respectivement par: $f(x) = cos^2(x) - 1$; $g(x) = cos^2(x) + cos(x) - 2$ et $h(x) = \frac{f(x)}{g(x)}$.

- 1) calculer g(0) et $g(\frac{\pi}{2})$.
- 2) a) Montrer que $g(x) = (\cos(x) 1)(\cos(x) + 2)$.
 - b) Résoudre alors dans IR l'équation g(x) = 0.
- 3) a) déterminer l'ensemble de définition D de la fonction h .
 - b) Montrer que pour tout $x \in D$ on $a : h(x) = \frac{\cos(x) + 1}{\cos(x) + 2}$
 - c) Résoudre dans $[-\pi, \pi]$ l'inéquation : $h(x) \leq 0$

Exercice nº3 (6 pts)

1) Soient f la fonction définie par
$$f(x) = \frac{x^2 - 5x + 6}{x - 2}$$
 pour tout $x \neq 2$.

a) Calculer:
$$\lim_{x \to -\infty} f(x)$$
 et $\lim_{x \to +\infty} f(x)$.

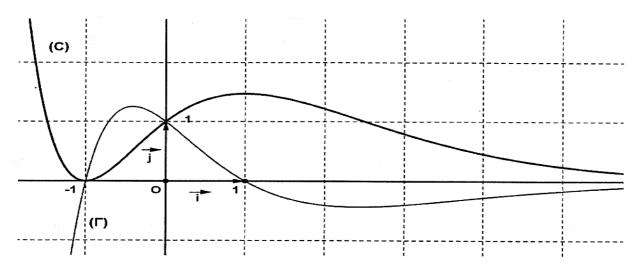
b) Montrer que pour tout
$$x \neq 2$$
 on $a: f(x) = x - 3$.

c) En déduire
$$\lim_{x \to 2} f(x)$$
.

2) On considère la fonction g définie par :

$$g: x \rightarrow \begin{cases} g(x) = f(x) & si x < 2 \\ g(x) = 1 - x & si x \ge 2 \end{cases}$$

- a) Déterminer l'ensemble de définition D de g.
- b) $Calculer\ g(2)$
- c) Montrer que g est continue en 2.


Exercice nº4 (4 pts)

On a représenté ci – dessous dans un repère orthogonal $(0,\vec{l},\vec{j})$ les courbes représentatives (C) et (Γ) respectivement des fonctions f et g qui sont définies sur IR. la courbe (C) admet un maximum relatif au point d'abscisse 1.

En utilisant le graphique :

1) Déterminer
$$f(0)$$
 , $g(0)$, $f(-1)$ et $g(-1)$

- 2) Décrire les variations de la fonction f.
- 3) Déterminer suivant les valeurs de x le signe de g(x).
- 4) Déterminer le nombre de solutions de l'équation : f(x) = g(x).

Bon travail