Lycée Ali B.Bembla	Devoir de synthèse n°2 Mathématiques	ème <u>Classe</u> 3 Technique1
<u>Date</u> 08/03/2013	<u>Prof</u> :Mosrati chawki	<u>Durée</u> 3 heures

Exercice:1 (4 pts)

Dans un plan P on considère les points distincts A et B tels que AB = $4\sqrt{2}$

1/ Soit G le barycentre des points pondérées (A, 1) et (B, 3).

Montrer que l'ensemble des points M du plan tels que $MA^2 + 3MB^2 = 124$ est un cercle ζ de centre G et de rayon 5.

2/ Montrer que l'ensemble des points M du plan tels que $MA^2 - MB^2 = -16$ est une droite Δ

Exercice:2 (8 pts)

Dans le plan complexe rapporté à un repère orthonormé $(O, \overrightarrow{U}, \overrightarrow{V})$, on considère les points A, B et C d'affixes respectifs $Z_A = i$, $Z_B = 2i$.

1. Soit M un point d'affixe Z tel que $Z \neq 2$ i et M' le point d'affixe $Z' = \frac{iZ + 2}{Z - i}$.

On pose Z = x + iy, avec x et y deux réels.

a- Montrer que Z' =
$$\frac{x}{x^2 + (y-1)^2} + i \frac{x^2 + y^2 - 3y + 2}{x^2 + (y-1)^2}$$
.

- b- Déterminer l'ensemble des points M tel que Z' soit réelle.
- c- Montrer que |Z' i| |Z i| = 1.
- d- Déduire la valeur de AM' x AM.
- e- Déduire que si M décrit le cercle ζ de centre A et de rayon 1 alors M' décrit un cercle ζ ' dont on précisera le centre et le rayon.
- 2. Déterminer l'ensemble des points M du plan tel que |Z'| = 1.
- 3. Soit $Z_1 = \frac{(3-i)(5+2i)}{(2-3i)(2+i)} + \frac{(3+i)(5-2i)}{(2+3i)(2-i)}$. Sans faire de calcul montrer que Z_1 est réel.

Exercice:3 (8 pts)

Soit la fonction f définie par $f(x) = \frac{2x^2 - x + 1}{x - 1}$.

On désigne par C_f la courbe représentative de f dans un repère o.n. $\left(O,\vec{i},\vec{j}\right)$

1/ Montrer que
$$f(x) = 2x + 1 + \frac{2}{(x-1)}$$

- 2/ Dresser le tableau de variation de f.
- 3/ a- Déterminer les asymptotes à C_f.

b-Montrer que le point I(1,3) est un centre de symétrie de C_f.

- 4 / Tracer la courbe C_f.
- 5/ Soit la fonction g définie par $g(x) = \frac{2x^2 |x| + 1}{|x| 1}$.
 - a- Déterminer le domaine de définition de g D_g.
 - b- Montrer que pour tout x de D_g , g(x) = f(x).
 - c- Montrer que g est une fonction paire.
 - d- Déduire la courbe de g de celle de f.

