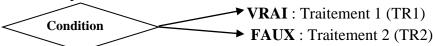
Chapitre 3

LES STRUCTURES DE CONTROLE CONDITIONNELLES

I. INTRODUCTION


Activité1:

Écrire une analyse, un algorithme et sa traduction en Turbo Pascal du programme nommé **PARITE**, qui permet de lire un nombre NB et affiche le message "Pair" si NB est pair sinon "Impair"

- Message = "Pair" si
- Message = "Impair" si.....

<u>Remarque</u>: le choix dépend du résultat d'une expression de comparaison (résultat ou). On dit que l'action à exécuter dépend d'une <u>CONDITION.</u>

Dans telle situation, on doit faire recours à une structure permettant à un programme de choisir entre possibilités de traitement suivant le résultat d'évaluation d'une condition.

Cette structure est dite : structure de contrôle CONDITIONNELLE

Il existe deux formes d'instructions conditionnelles :

- Forme simple
- Forme généralisée

II.FORME SIMPLE

II.1. Forme complète

• Vocabulaire et syntaxe:

vocabulane et syntaxe.		
Au niveau de L'analyse	Au niveau de L'algorithme	Au niveau du Turbo Pascal
[Init] Si condition Alors	{Init}	;{Init}
Instruction 1 de TR1	Si condition Alors	If condition (s) THEN
	Instruction 1 de TR1	BEGIN
Instruction n de TR1		Instruction 1 de TR1;
Sinon	Instruction n de TR1	;
Instruction1 de TR2	Sinon	Instruction n de TR1;
	Instruction1 de TR2	END
Instruction n de TR2		ELSE
FinSi	Instruction n de TR2	BEGIN
	Finsi	Instruction1 de TR2;
		;
		Instruction n de TR2;
		END;

Année Scolaire: 2010/2011

• Remarque

- [init] est une séquence d'instruction qui contiendra les éventuelles
- Dans le cas de plusieurs instructions pour TR1 et TR2, on doit obligatoirement utiliser en Pascal les délimiteurs (BEGIN et END;)
- **Attention**: Il n'y a pas de ";" après l'instruction qui précède **ELSE** (END) car l'instruction **IF** n'est pas encore finie.
- Fin si en Pascal.
- Condition(s) peut être simple ou complexe (combine plusieurs conditions simples, chacune entre paranthèses, à l'aide des opérateurs logiques).

Exemple: Si (a>b) et (c<d) alors

• Application 1

- Quelles erreurs ont été commises dans chacune des instructions suivantes:
 - a) if a < b then x := x+1; else x := x-1;
 - b) if a < b then x := x+1; y := b end else x := x-1; y := a end
 - c) if n := 0 then p = 1;

Application 2

Ecrire l'analyse et l'algorithme d'un programme permettant de remplacer le 1^{er} caractère d'une chaîne donnée par son code ascii s'il est lettre miniscule et par son rang dans l'alphabet s'il est lettre majuscule.

<u>Conclusion</u>: La partie **Sinon** dans une structure conditionnelle simple n'est pas toujours Dans le cas où elle est absente, on dit que la structure de contrôle conditionnelle a une forme simple réduite.

II.2. Forme simple réduite

• **Définition:** Elle se réduit à l'exécution d'un *traitement* quand une *condition* est réalisée.

Exemple : Si je fais des études de médecine alors je servirai l'humanité.

• Vocabulaire et syntaxe:

Au niveau de L'analyse	Au niveau de L'algorithme	Au niveau du Turbo Pascal
[Init] Si condition (s) Alors	{Init} Si condition (s) Alors	{Init}IF condition (s) THEN
Instruction 1 de TR1	Instruction 1 de TR1	BEGIN
		Instruction 1 de TR1;
Instruction n de TR1	Instruction n de TR1	;
Finsi	Finsi	Instruction n de TR1;
		END;

• Remarque

Lorsque l'évaluation de la condition produit la valeur :

- VRAI : les instructions entre Alors et Finsi sont exécutées
- FAUX : les instructions entre Alors et Finsi ne sont pas exécutées

Application 3

- Présenter l'analyse et l'algorithme permettant:
 - O De vérifier si une chaîne contient que des chiffres ou non.
 - O De saisir un mot et d'afficher si un caractère c existe dans ce mot ou non.
 - o De saisir deux entiers au clavier puis afficher leur maximum.
 - O De saisir la moyenne d'un élève et d'afficher est ce que l'élève a réussi ou non

Année Scolaire: 2010/2011

III. FORME GENERALISEE

Activité 2:

Écrire une analyse, un algorithme et sa traduction en Turbo Pascal du programme nommé **Mention**, qui permet d'afficher la mention d'un élève (redouble, passable, bien ou très bien).

REMARQUES : Dans ce cas l'utilisation d'une seule structure conditionnelle à forme complète (Permet de choisir entre deux possibilités de traitement) : Donc nous ferons appel à la forme généralisée imbriquée : les instructions qui suivent **Alors** ou bien **Sinon** peuvent être elles même des structures conditionnelles.

• **Définition :** C'est une structure algorithmique qui fait appel àtraitements. L'exécution d'un traitement entraîne automatiquement laexécution des autres traitements

• Vocabulaire et syntaxe

Au niveau de l'analyse	Au niveau Pascal
[Init]	{Init}
Si condition1 alors	If condition1 then
Traitement1	Begin Traitement1 End
Sinon sialors	Else if
	Else if conditionN-1 then
Sinon si conditionN-1 alors	Begin TraitementN-1 end
TraitementN-1	Else
Sinon	Begin TraitementN End;
TraitementN	
FinSi	

• Remarque

Lorsque l'évaluation de condition1 (s) (C1) produit la valeur :

- **VRAI** : seul le traitement1 (TR1) et exécuté
- FAUX : on passe à l'évaluation de condition2 (s) (C2), si elle produit la valeur :

VRAI: seul le traitement2 (TR2) et exécuté

FAUX : on passe à l'évaluation de condition3 (s) (C3) et ainsi de suite...

Si aucune de N-1 (pour notre exemple N=4) premières conditions ne produit la valeur VRAI, par conséquent le traitement N (TR4) est exécuté.

• Application 4:

Écrire une analyse, un algorithme et sa traduction en Turbo Pascal du programme nommé **COMMISSION**, qui permet de lire le montant total des ventes **V** puis affiche la commission **C** correspondante. La commission est calculée de la manière suivante :

■
$$V \le 50$$
 $\Rightarrow C = 0$ ①

■ $50 < V \le 500$ $\Rightarrow C = 10 \% V$ ②

■ $500 < V \le 1000$ $\Rightarrow C = 50 + 15\% V$ au dessus de 500 ③

■ $V > 1000$ $\Rightarrow C = 200 + 20\% V$ au dessus de 1000 ④

• Application 5:

Présenter l'analyse et l'algorithme permettant d'afficher le nombre de jour d'un mois donné.

Année Scolaire : 2010/2011

IV. LA STRUCTURE CONDITIONNELLE A CHOIX

REMARQUE

L'analyse montre un choix parmi plusieurs possibilités suivant le contenu que prendra le sélecteur C (variable de type caractère : un) en utilisant la structure conditionnelle imbriquée (plusieurs instructions Si ...) : Dans telle situation il est plus intéressant de faire recours à la structure de choix qui évite l'utilisation d'une trop longue structure conditionnelle généralisée et permet une meilleur de la solution.

• Vocabulaire et syntaxe:

Au niveau de L'analyse et l'algorithme	Au niveau du Turbo Pascal
[Init] Selon Sélecteur Faire	[Init] Case Sélecteur Of
Valeur1 : Action 1	Valeur1 : Action 1 ;
Valeur2 : Action 2-1	Valeur2 : BEGIN
	Action 2-1
Action 2-n	
Valeur4, Valeur5, Valeur6: Action 4	Action 2-n
Valeur7 Valeur20 : Action5	END;
Sinon	Valeur4, Valeur5, Valeur6 : Action 4;
Action n+1	Valeur7 Valeur20 : Action5 ;
Finselon	Else
	Action n+1;
	End ;

REMARQUES

- Dans tous les cas Sélecteur doit être de type (elle ne peut jamais être de type réel ou chaîne de caractère)
- Sélecteur est comparée à :
 - Une seule valeur
 - O Une série de valeurs séparée par ","
 - o Un intervalle
- En cas d'égalité du sélecteur à une valeur (ou fait partie d'un intervalle) l'action qui lui fait associer est exécutée. Les autres ne seront pas exécutées
- En cas d'inégalités il y aura exécution de la partie Sinon (Action n+1) si elle est présente (optionnelle)
- Si la valeur du sélecteur appartient à plusieurs valeurs (valeur i, valeur i+1, ...), seule la première valeur appartenant à valeur i sera exécutée.

Application 6

Ecrire un algorithme **SELECTION** qui lit un caractère C et affiche :

- Son majuscule si C en minuscule
- Son minuscule si C en majuscule
- La racine carrée si C représente un chiffre
- Le code ASCII de C s'il est un caractère de ponctuation :., ?!;
- "Caractère non valide" dans le cas contraire

Application 7:

Ecrire un algorithme du programme « **DATE** », qui saisit une date sous la forme jj/mm/aaaa (chaîne de 10 caractère) où jj représente le jour, mm le mois, aaaa l'année et affiche un commentaire sur la personne ayant cette date de naissance (jeune, adulte,...).

Année Scolaire: 2010/2011