L. Regueb	Mathématiques Devoir de Synthèse Nº3	
Prof: Salhi Noureddine	Devoir de Synthèse №3	Le:27/05/2013 D: 3h

Exercice1(3pts)

Une urne contient 4 boules rouges, 5 boules vertes et 2 boules blanches.

Toutes les boules sont indiscernables au toucher.

On tire simultanément et au hasard 3 boules de l'urne

Calculer la probabilité de chacun des évènements suivants

A: « obtenir 3 boules de même couleur.»

B: « obtenir au moins 2 boules rouges.»

C : « obtenir 3 boules de couleurs différentes .»

D: « obtenir exactement 1 boule blanche parmi les trois boules tirées .»

Exercice2(3pts)

Une classe de 30 élèves , 12 filles et 18 garçons , doit élire un comité composé d'un président , un vice-président et un secrétaire .

- 1) Combien de comités peut-on constituer?
- 2) Combien de comités peut-on constituer sachant que le poste de secrétaire doit être occupé par une fille ?
- 3) Quel est le nombre de comités comprenant l'élève X?
- 4) Quel est le nombre de comités pour lesquels le président est un garçon et le secrétaire une fille?

Exercice3(3pts)

Soit f la fonction définie sur \mathbb{R} par : $f(x) = \sin(2x)$.

- 1) Montrer que f est périodique de période π .
- 2) On va étudier f sur $[0,\pi]$; déterminer les points d'intersection de la courbe de f avec l'axe des abscisses .
- 3) Calculer f'(x) et montrer que f' s'annule sur $[0,\pi]$ en $\frac{\pi}{4}$ et $\frac{3\pi}{4}$.
- 4) Dresser le tableau de variation de f sur $[0, \pi]$.

Exercice4(5pts)

Soit la suite (u_n) définie sur $\mathbb N$ par : $u_0=-2$ et $u_{n+1}=\frac{2}{3}u_n-1$, $n\in\mathbb N$.

- 1)a) Calculer u_1 et u_2 .
 - b) Montrer que la suite (u_n) n'est ni arithmétique ni géométrique.
- 2)a) Montrer par récurrence que pour tout $\,n\in\mathbb{N}\,;\;u_n>-3$.
 - b) Montrer que la suite (u_n) est décroissante.
- 3) Soit la suite (\boldsymbol{v}_n) définie sur $\mathbb N$ par : $\boldsymbol{v}_n = \boldsymbol{u}_n + 3$.
 - a) Montrer que la suite (v_n) est une suite géométrique de raison $\frac{2}{3}$.
 - b) Calculer v_n en fonction de n . En déduire $\lim_{n\to +\infty} u_n$.

Exercice5(6pts)

L'espace est muni d'un repère orthonormé $(0, \vec{i}, \vec{j}, \vec{k})$.

On donne les points A(1,0,1); B(2,1,0) et C(-1,2,1).

- 1)a) Montrer que les points A, B et C ne sont pas alignés.
 - b) Montrer que le plan (ABC) est d'équation : x + y + 2z 3 = 0.
- 2) Soit D le point de coordonnées (2,2,1).
 - a) Vérifier que le point D n'appartient pas à (ABC).
 - b) Déterminer une équation cartésienne du plan P parallèle au plan (ABC) et passant par le point D.
- 3) Déterminer une représentation paramétrique de la droite (Δ) perpendiculaire au plan (ABC) en A.
- 4)a) Déterminer les coordonnées du point A' intersection de la droite (Δ) et le plan P.
 - b) En déduire la distance entre les deux plans P et (ABC).