Devoir de synthèse n°03

AS :2010/2011

L.A.B.Bembla Mr: Mbarki. J

Durée : 2h Classes 4^{ème} E.G

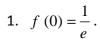
Exercice 1: (4points)

Dans la figure ci-contre (ζ) est la courbe représentative de la fonction f définie sur IR par

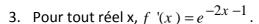
$$f\left(x\right)=e^{-2x-1}$$
 . Δ est la tangente à la courbe $\left(\zeta\right)$ au point d'abscisse $-\frac{1}{2}$.

Répondre par vrai ou faux à chacune des propositions suivantes.

On ne donnera aucune justification.



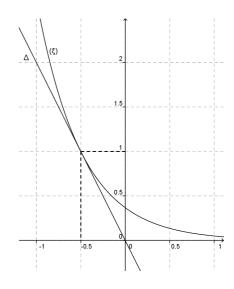
$$2. \quad \lim_{x \to +\infty} f(x) = 0.$$



4. Une équation de la tangente
$$\Delta$$
 est y=-2x.

5. Pour tout réel x,
$$e^{-2x-1} \ge -2x$$
.

6. Pour
$$x > -\frac{1}{2}$$
, $e^{-2x-1} > 1$



Exercice 2: (6points)

Soit le graphe G ci-contre

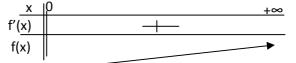
4. On donne
$$M^2 = \begin{pmatrix} 3 & 2 & 2 & 2 & 2 \\ 2 & 4 & 1 & 3 & 2 \\ 2 & 1 & 2 & 1 & 2 \\ 2 & 3 & 1 & 4 & 2 \\ 2 & 2 & 2 & 2 & 3 \end{pmatrix}$$
. Combien de chaine de longueur 4 relient- elle les sommets

Exercice 3: (5points)

Soit f la fonction définie sur $]0;+\infty[$ $par f(x) = x + \frac{2\ln x}{x}$.

On note (C_f) sa courbe représentative dans un repère orthonormé $(O; \overrightarrow{I}; \overrightarrow{j})$.

- 1. Calcular $\lim_{x \to 0^+} f(x)$ et $\lim_{x \to +\infty} f(x)$.
- 2. On admet que le tableau de variation de f est le suivant :
 - a) Montrer que l'équation f(x)=0 admet Dans IR une unique solution α .



- b) Monter que $0.5 < \alpha < 1$.
- 3. a) Montrer que la droite $\Delta : y = x$ est une asymptote à (C_f) au voisnage de $+\infty$.
 - b) Etudier la position de (C_f) par rapport à Δ .
- 4. Tracer Δ et (C_f).
- 5. Calculer, en unité d'aire, l'aire de la partie du plan limitée par Δ , (C_f) et les droites d'équations : x=1 et x=e.

Exercice 4: (5points)

Soit f la fonction définie sur IR par $f(x) = 1 + x + e^x$

On désigne par (C_f) la courbe représentative de f dans un repère orthonormé $(O; \vec{i}; \vec{j})$.

- 1/a) Montrer que pour tout réel x : f '(x) > 1.
 - b) Dresser le tableau de variation de f .
- 2/a) Montrer que Δ : y = x + 1 est une asymptote à (C_f) au voisinage de $-\infty$
 - b) Etudier la position de (C_f) par rapport à Δ .
- 3/ Montrer que $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$. Interpréter le résultat graphiquement.
- 4/a) Montrer que f réalise une bijection de IR sur IR.
 - b) Montrer que l'équation f(x) = 0 admet une unique solution α et que :-2 < α <-1