<u>LS 7 novembre EL Alia</u>

Prof: Tlich Ahmed

Devoir de contrôle n°2 (Bac Math 1)

AS :2009/2010

Durée :2h

Exercice n°1: (3 points)

Recopier la seule bonne réponse et sans justification.

a)
$$\int_{-1}^{1} \frac{x^2}{1+x^2} dx = 0$$

a)
$$\int_{-1}^{1} \frac{x^2}{1+x^2} dx = 0$$
 b) $\int_{-1}^{1} \frac{x^2}{1+x^2} dx = 2 \int_{0}^{1} \frac{x^2}{1+x^2} dx$ c) $\int_{-1}^{1} \frac{x^2}{1+x^2} dx = -1$

c)
$$\int_{-1}^{1} \frac{x^2}{1+x^2} dx = -1$$

Question 2: Soit f une similitude directe et g une similitude indirecte de même rapport 2 alors g0f⁻¹ est:

a)une similitude indirecte qui fixe un seul point

b) Un antidéplacement

c) identité du plan

Question 3: Soit f une fonction bijective de IR dans IR et vérifiant $f'(x) = 1 + f^2(x)$ alors:

a)
$$(f^{-1})'(x) = \frac{1}{1+x^2}$$

b)
$$(f^{-1})'(x) = 1 + x^2$$

c)
$$(f^{-1})'(x) = \frac{-1}{1+x^2}$$

Exercice n°2: (6points)

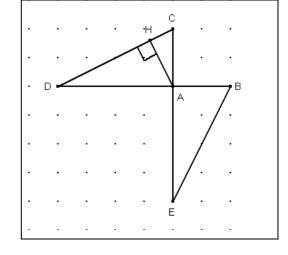
Dans la figure ci contre, ABC et ADE sont deux triangles isocèles

et rectangle tels que : AB = 1 , AD = 2 , $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv \frac{\pi}{2} [2\pi]$

et
$$(\overrightarrow{AD}, \overrightarrow{AE}) \equiv \frac{\pi}{2} [2\pi]$$

On note H le pied de l'hauteur du triangle ADC issue de A.

- 1. Soit f la similitude directe qui transforme A en C et D en A. Préciser le rapport et l'angle de f.
- 2. Soit I le centre de f.



- a) Donner une mesure de (ID, IC) puis déduire que I appartient à (CD).
- b) Déterminer f (CD) puis déduire que I appartient à f (CD).
- c) En déduire que H est le centre de f.
- 3. Soit $g = f^{-1}oS_{\Delta}$ où S_{Δ} désigne la symétrie orthogonale d'axe Δ la médiatrice du segment [BC].
- a) Déterminer g (B) et g (A).
- b) Prouver que g est une similitude indirecte dont on précisera le rapport.
- c) Soit G le symétrique de D par rapport à A.
- i) Montrer que : $\overrightarrow{GD} = 4\overrightarrow{GB}$.
- j) En déduire que G est le centre de g et que (AB) est son axe.

Exercice n°3: (5 points)

Soit la fonction f définie sur $[0, +\infty]$ [par $f(x) = \sqrt{x^2 + 1} + x$

- 1) a) Etudier les variations de f et dresser son tableau de variation.
- b) Montrer que la droite D : y = 2x est une asymptote à la courbe de f.
- 2) a)Montrer que f est une bijection de $[0, +\infty]$ [sur un intervalle J que l'on précisera.
- b) Montrer que la fonction f^{-1} est dérivable sur l'intervalle J.
- c) Déterminer l'expression de $f^{-1}(x)$.
- d) Tracer dans le même repère les courbes de f et de f^{-1} avec deux couleurs différentes.

Exercice n°4:(6points)

Soit la fonction F définie sur $\left[0, \frac{\pi}{2}\right]$ par : $F(x) = \int_0^{Sinx} \sqrt{1 - t^2} dt$.

- 1) a)Montrer que F est dérivable sur $\left[0, \frac{\pi}{2}\right]$ et déterminer sa fonction dérivée.
- b) Calculer F(0) puis déduire que pour tout $x \in \left[0, \frac{\pi}{2}\right]$ on a : $F(x) = \frac{1}{2}x + \frac{1}{4}Sin(2x)$
- c) Calculer $\int_0^1 \sqrt{1-t^2} dt$
- 2) Soit la suite (I_n) définie par $I_0 = \int_0^1 \sqrt{1-t^2} dt$ et $I_n = \int_0^1 t^n \sqrt{1-t^2} dt$ pour tout $n \ge 1$.
- a) Calculer I_1 .
- b) Vérifier que pour tout $t \in [0,1]$ on a ; $\sqrt{1-t^2} \le 1$ puis déduire que pour tout $n \ge 1$ on a : $0 \le I_n \le \frac{1}{n+1}$
- c) En déduire $\lim_{n\to+\infty} I_n$.
- d) En remarquant que : $t^{n+1}\sqrt{1-t^2}=t^n\times t\sqrt{1-t^2}$ et par une intégration par partie, montrer que pour tout $n\geq 1$ on a : $I_{n+1}=(\frac{n}{3+n})I_{n-1}$.
- e) Déduire la valeur de I_2 .

Bon travail

<u>Remarque</u>: On rappelle que : $Cos^2(x) = \frac{1}{2} + \frac{1}{2}Cos(2x)$