Lycée Martyr Wallid Méchlaoui Mornag

DEVOIR DE CONTROLE N°2

As:2013/2014

4^{éme}M Duré: 2 H

Prof: Oueslati. Mongi

Exercice n°1

Choisir une seule réponse correcte en justifiant la réponse choisit.

Soit $u_n = \int_1^e (\ln x)^n dx$; $n \in IN$

1) u₂ est égale à:

a) e-2

b) 2-e

c) e-1

2) A l'aide d'intégration par partie on a u_{n+1} est égale à :

a) $e - (n+1)u_n$

b) $(n+1)u_n-e$

c) $\frac{1}{n+1}u_n - e$

3) La suite u_n est :

a) est décroissante ; b) est croissante ; c) ni croissante ni décroissante

Exercices n°2 (10 points)

Soit f une fonction définie $\sup[0;1[par:\begin{cases} f(x) = \frac{1 - \ln x}{\ln^2 x} & si & x \in]0;1[\\ 0 & si & x = 0 \end{cases}$

1) a) Etudier la dérivabilité de f à droite en 0. Interpréter géométriquement le résultat.

puis montrer que pour tout x de]0;1[on a $f'(x) = \frac{\ln x - 2}{x^3}$

b)Etudier les variation de f sur [0;1]; (C) la courbe représentative de f

c) Placer le point d'abscisse $\frac{1}{2}$ de (C); ((L) la courbe représentative de la fonction In)

d) Construire la courbe (C) de f dans un repère orthonormé (O;i;j)

2) a) Montrer que f est bijective de [0;1[sur [0;+ ∞ [et construire (C') la courbe de f^{-1} .

b) Déterminer $f(e^{-(\frac{1+\sqrt{I+4x}}{2x})})$; en déduire $f^{-1}(x)$ et son domaine de définition

3) Soit F la fonction définie sur [0;1[par: $F(x) = \frac{-x}{\ln x}$ si $x \in]0;1[$ et F(0)=0

a) Montrer que F est dérivable sur [0;1[et calculer F'(x)

b) Déterminer alors l'aire A de la partie du plan limitée par (C) et les droites d'équation y=2 ; x=0 et x= $\frac{1}{a}$

4) Soit g la fonction définie sur [0;1[par:

 $g(x) = \int_0^{f(x)} f^{-1}(t) dt - xf(x) + \int_0^x f(t) dt$

a) Calculer g(0) et montrer que g est dérivable sur sur]0;1[puis calculer g'(x)

b) déduire g(x)=0 pour tout x de [0;1[

c) En déduire $\int_{0}^{2} f^{-1}(t) dt$.Interpréter graphiquement le résultat. Retrouver ce résultat par 2^{éme} méthode

Exercice n°3 (7 points)

Soit OBC un triangle tél que OB=2OC et $(\overrightarrow{OB}; \overrightarrow{OC}) \equiv \frac{-\pi}{2} [2\pi]$; (C_B) et (C_C) deux (3 points) cercles passent par O et de centres respectifs B et C . On désigne par H

et K les points définies par $\overrightarrow{BH} = \frac{2}{3}\overrightarrow{BC}$ et $S_c(B)=K$; voir figure (page 3)

- 1) Soit s une similitude directe de centre O et S(B)=CCaractériser s et montrer que $S((C_B))=(C_C)$
- 2) Soit f une similitude qui transforme (C_B) en (C_C)
 - a) Quel est le rapport de f?
 - b) Montrer que l'ensemble Γ des centres I des similitudes f est le cercle de diamètre [HK] construire Γ
- 3) Soit A le point du plan P tel que le triangle ABC soit équilatéral de sens direct. On désigne par Γ' le cercle circonscrit au triangle ABC et par Ω le centre de Γ' On pose s'=R oh $(A;\frac{\pi}{3})$ $(B;\frac{1}{2})$
 - a) Déterminer s'(B) et montrer que s' est une similitude directe .Préciser son rapport et son angle .
 - b) On désigne par ω le centre de s' .Montrer que $\omega \in \Gamma \cap \Gamma'$ et que $\omega = S_{\Omega}(B)$
- 4) On pose $\sigma=s'oS_{(\omega B)}$
 - a) Montrer que σ est une similitude indirecte .Préciser son rapport et son centre.
 - b) On pose Δ l'axe de σ .Montrer que $S_{\Delta}(\Omega)=C$; en déduire que $\Delta=(\omega H)$
 - c) Construire ω puis Δ et montrer que $\sigma((\omega K))=(\omega K)$

Feuille à rendre avec la copie du devoir

Nom et Prenom





