

Exercice Nº1 (3pts)

Soit la fonction suivante:

0-def fn inconnu (n,p:entier):entier

1- si (n=p)ou (p=0) alors

Inconnu ← 1

sinon

Inconnu \leftarrow fn inconnu (n-1,p-1)+fn inconnu(n-1,p)

finsi

1- Donner la trace d'exécution de la fonction inconnu(4, 2)

2- Donner le rôle de cette fonction :

.....

3- Écrire l'algorithme d'une fonction intitulée Som_Comb permettant de calculer la somme des combinaisons suivante :

$$C_{\,n}^{\,0} \ - \ C_{\,n}^{\,1} \ + \ C_{\,n}^{\,2} \ - \ C_{\,n}^{\,3} \ + \ + \ (\text{-1})^{n} \ C_{\,n}^{\,n}$$

Exercice N°2 (3pts)	
Soit la suite (U) définie par:	
U0=x	x un entier positif
U1= 3	
Un = Un-1 + 2*Un-2	pour tout $n \ge 2$
En supposant que cette suite	est croissante, écrire l'algorithme d'un module permettant de vérifier
	rme de la suite U ou non. Dans l'affirmative renvoyer son rang sinon
renvoyer -1.	
ionvoyer i.	
••••••	
•••••	
•••••	
•••••	
•••••	
•••••	

<u>Exercice N°3 : (14 pts)</u>

Ecrire un programme qui permet de remplir le triangle inférieur d'une matrice carré M de taille n par des chaînes de caractères binaires de longueur supérieur ou égale à 2 avec (3<=n<=10).

On veut remplir un tableau T par les chaînes de chaque ligne de M qui sont terme de la suite de Thue Morse commençant par un caractère C saisi (0-1).

Le tableau T doit contenir 4 informations :

- le caractère saisi (0-1)
- la **chaîne** (contenu d'une ligne de la matrice)
- numéro de ligne
- le **rang** du terme de thue Morse

Exemple: n=4

1	1001			
2	1101	1100		
3	1001	01100	1101001	
4	000	0000	1101	001

Saisir le caractère C = "1"

Les termes de Thue Morse sont les suivants pour c='1'

terme n°1: 10 terme N°2: 1001 terme N°3: 10010110

terme N°4: 1001011001101001

terme N°5: 10010110011010010110100110010110

.

Le résultat du tableau T sera le suivant :

T 1 1 1 1 1 100101101001 1 3 4

Travail demandé:

On demande d'écrire un programme qui permet de réaliser le traitement désiré, pour cela :

- 1) décomposer le problème en modules
- 2) analyser le programme principal ainsi que les modules envisagés