

EPREUVE DE SCIENCES PHYSIQUE

ANNEE SCOLAIRE: 2017 / 2018 CLASSE : 4 éme SC - INFO DATE: Décembre 2017 **DUREE** : 2 Heures

L'épreuve comporte un exercice de chimie et deux exercices de physique répartis sur cinq pages numérotées de 1/5 à 5/5. Les pages 4/5 et 5/5 sont à remplir par l'élève et à remettre avec la copie.

*/ CHIMIE:

Détermination d'une quantité de matière a l'aide d'une réaction chimique (Dosage)

*/ PHYSIQUE:

Exercice Nº1: La bobine Exercice N°2: Le dipôle RL

N.B: */ Il est absolument interdit d'utiliser le correcteur.

Il sera tenu compte de la qualité de la rédaction ainsi que de sa concision.

CHIMIE : (5 points)

On donne: Les masses molaires atomiques :

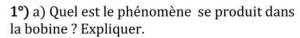
*/ $M_{Au} = 197 \text{ g.mol}^{-1}$ */ $M_{ce} = 35.5 \text{ g.mol}^{-1}$.

On se propose dans cet exercice de déterminer la concentration C_1 d'une solution aqueuse (S_1) de chlorure d'or (Au+ + Ce), par la méthode de dosage redox manganimétrique.

- 1°) Expliquer les phrases suivantes :
- a) Doser une solution.
- b) Dosage redox manganimétrique.
- 2°) Pour réaliser expérimentalement ce dosage, on considère un volume $V_1 = 20 \text{mL}$ de (S_1) , qu'on dose par une solution aqueuse (S₂) de permanganate de potassium (KMnO₄), acidifiée et de concentration molaire $C_2 = 22.5.10^{-3} \text{ mol.L}^{-1}$.

L'équivalence redox est obtenue par l'addition d'un volume $V_{2 \text{ éq}} = 12,5 \text{ mL}$ de la solution (S₂).

- a) Annoter le schéma du dosage représenté par la figure -1- de la page 4/5, en indiquant la solution dosante et la solution à doser.
- b) Décrire brièvement comment doit-on opérer expérimentalement pour réaliser ce dosage, en indiquant comment détecter l'équivalence expérimentalement ?
- c) On donne les deux couples redox mis en jeu au cours de ce dosage :

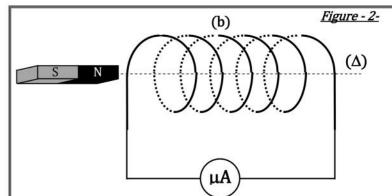

 MnO_4 / Mn^{2+} et Au^{3+}/Au^{+} .

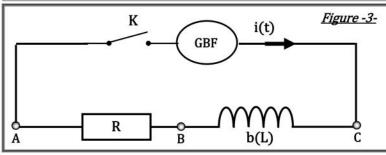
- c₁) Ecrire l'équation formelle de chaque couple, sachant que le premier couple réagit en milieu acide.
- c2) En déduire l'équation du dosage réalisé.
- c₃) Les ions Au⁺ sont-ils oxydés ou réduits ? Justifier.
- d) Définir l'état d'équivalence rédox. En déduire C₁.
- 3°) a) Calculer la masse m de chlorure d'or (solide) nécessaire pour préparer 500mL de (S1).
- b) Décrire le protocole expérimental pour préparer cette solution.

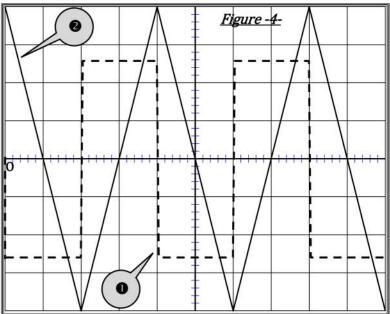
PHYSIQUE: (15 points)

EXERCICE N°1: (7,5 points)

I°) Une bobine (b) liée à un microampèremètre est placée à proximité d'un aimant droit comme l'indique la *figure -2-*. On éloigne rapidement l'aimant de la bobine suivant la direction (Δ).


- **b)** Si on éloigne lentement l'aimant de la bobine que se passe-t-il ?
- 2°) Enoncer la loi de LENZ.
- **3°)** Déduire le sens du courant induit dans la bobine sur un schéma clair.
- II°) La bobine précédente d'inductance L et de résistance r négligeable est montée en série avec un résistor de résistance $R=100~\Omega$, un générateur basse fréquence délivrant entre ces bornes une tension triangulaire et un interrupteur K. Voir *figure -3-*.


Un oscilloscope bicourbe convenablement branché permet de visualiser les tensions $u_b(t)$ aux bornes de la bobine sur la voie X et $u_R(t)$ aux bornes du résistor sur la voie Y.

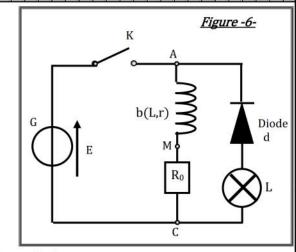

La <u>figure -4 -</u> représente les oscillogrammes **0** et **2** obtenus.

On donne les calibres de l'oscilloscope:

- */ Calibre des temps : 5ms/div.
- */ Calibre des tensions : 0,5 V/div
- 1°) Quel est le phénomène se produit dans la bobine lorsque K est fermé? Expliquer.
- **2°) a)** Utiliser la *figure -5- de la page 4/5* pour représenter les connexions à faire avec l'oscilloscope.
- b) Identifier les oscillogrammes Oet 2. Justifier.
- 3°) Déterminer la période T du GBF
- **4°)** Exprimer $u_b(t) = f(L, R \text{ et } \frac{du_R(t)}{dt})$.
- 5°) Déterminer la valeur de L.
- 6°) Exprimer l'énergie magnétique de la bobine en fonction de L, R et u_R . Calculer sa valeur à l'instant de date $t=\frac{T}{2}$.

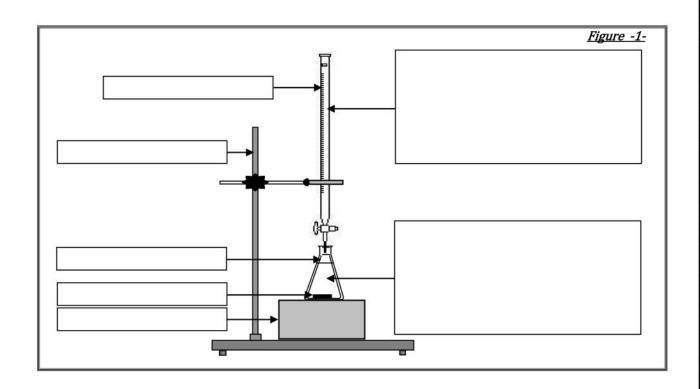
EXERCICE N° 2: (7,5 points)

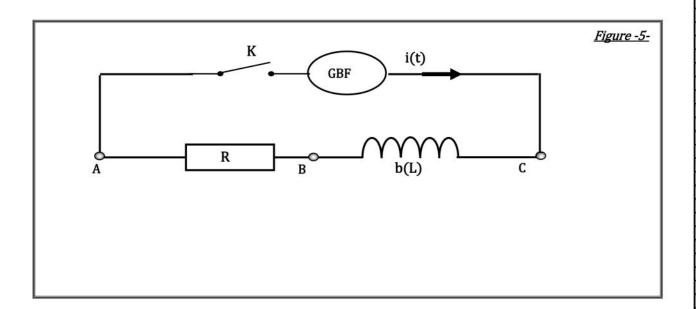
Le circuit électrique de la figure -6- est formé par :

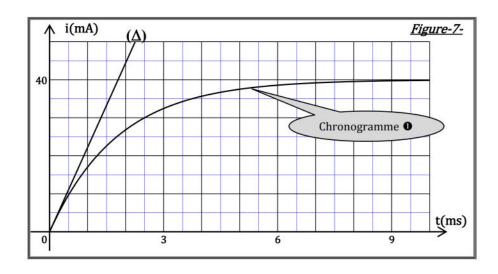

- */ G: Un générateur de tension idéal de fem E = 4 V.
- */ R_0 : Un conducteur ohmique de résistance $R_0 = 95 \Omega$
- */ d : Une diode.
- */ b : Une bobine d'inductance L et de résistance interne r.
- */ L: Une lampe.
- */ K: Un interrupteur.
- I°) Quel est le rôle de la diode dans ce circuit ? Justifier.
- II°) A un instant de date t = 0s, on ferme K.
- 1°) Quelle est la réponse du dipôle (L, r, R₀) à l'échelon de tension utilisé.
- 2°) Un dispositif d'acquisition de données relié à un ordinateur permet de suivre l'évolution de l'intensité du courant i en fonction du temps, on obtient le chronogramme • de la figure -7- de la page 5/5, sur le quel est tracée la tangente (Δ) au chronogramme à l'instant de date t = 0.
- a) Déterminer graphiquement la valeur de l'intensité i en régime permanent notée I₀.
- b) Calculer la résistance r de la bobine.
- 3°) On veut retrouver le chronogramme mais en utilisant un oscilloscope.
- a) Schématiser les branchements qui permettent d'observer l'oscillogramme demandé. Justifier.
- b) Remplir le tableau de la *figure -8- de la page 6/6* et tracer l'oscillogramme obtenu sur l'écran de l'oscilloscope de la même figure.

On donne : Les sensibilités de l'oscilloscope :

- */ Sensibilité horizontale : 2ms/div.
- */ Sensibilité verticale pour les 2 voies : 0,5V/div
- 4°) a) Etablir l'équation différentielle en i(t) noté (I)
- b) En déduire l'équation différentielle de variable ub(t) notée (II)
- c)L'équation (II) admet pour solution $u_b(t) = B + A \exp(kt)$, avec A, B et k sont des constantes. Exprimer ces constantes en fonction des paramètres E, R₀, r et L du circuit.


En déduire alors l'expression de u_b en fonction de E, R_0 , r, L, t et τ , avec τ constante de temps du dipôle (L,r, R_0)


- d) En utilisant le chronogramme **0**, déterminer τ. Deux méthodes sont exigées, qui seront indiquées sur la figure -7- de la page 5/5.
- e) En déduire la valeur de L.
- III°) A un instant de date t = 0s, pris comme nouvelle origine des temps, on ouvre l'interrupteur K:
- 1°) Décrire l'état de la lampe L. Justifier avec concision.
- 2°) Que se passe-t-il pour l'énergie qui était emmagasinée dans la bobine ?



NOM ET PRENOM:

FEUILLE A RENDRE AVEC LA COPIE

										<u>Fig</u>	<u>ure -8-</u>
Points de l'oscillogramme	0			M				N			
t(ms)	0	0			2,5			9			
t(divisions)											
I(A)										_	
Tension(V)	$\overline{}$										
Tension (divisions))										
				-			9				
_	-										
				1							
				1							
				1							
++		++++		++++	++++		++++	-+++	++++		
				1							
		2		-							
				-	- · · · · · · · · · · · · · · · · · · ·						
				=							
-				-							
				=							
0	10:	A	D						V- 54		