Niveau: 4 éme sciences

informatique

Coef: 3

sciences physiques

Prof: Daghsni Sahbi

Durée: 3 Heures

Date: Mars 2012

*Cette épreuve comporte un exercice de Chimie et Trois exercices de physique repartis sur 4 pages.

Chimie: Théme: électrolyse (5 points)

Sous la hotte d'un laboratoire , on obtient le cuivre métallique par l'électrolyse d'une solution aqueuse de bromure de cuivre II ($Cu^{2+} + 2Br^{-}$).

La figure n°1 représente le schéma incomplet du dispositif d'électrolyse .

Anode (graphite)

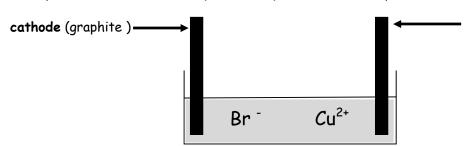
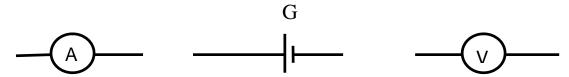



Figure n°1

1°) En vue d'avoir le schéma complet du dispositif d'électrolyse , recopier la figure n°1 et la compléter à l'aide des composants suivants : (0,75 μ t)

- 2°) On ferme l'interrupteur est réalisée sous une tension E avec une intensité constante I. Au bout d'une durée Δt , on constate que la cathode se recouvre d'un dépôt de cuivre métallique et au voisinage de l'anode , il se forme le gaz de dibrome Br_2 .
- a°) Sur le schéma du diapositif d'électrolyse précédent , indiquer par des flèches , le sens de déplacement des anions et celui des cations lorsque l'interrupteur k est fermé. (1 μt)
- b°) Ecrire les demi équations correspondant aux transformations se produisant aux deux électrodes. (1 pt)
- c°) Préciser l'électrode siège d'une oxydation et celle siège d'une réduction. (1 pt)
- 3°) L équation de la réaction chimique qui se produit au cours de l'électrolyse est :

La réaction chimique ayant lieu est -elle spontanée ou imposée ? Justifier. (0.5 pt)

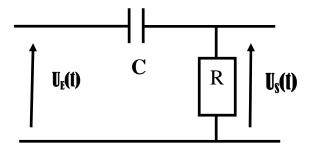
4°) Au bout de la durée Δt , la masse du cuivre déposé est m = 63,5 .10⁻² g. Quel est le volume de dibrome Br₂ libéré au voisinage de l'anode. (0,75 μ t)

On donne:

- \succ La masse molaire atomique du cuivre : M= 63,5 g.mol⁻¹.
- \triangleright Le volume molaire : $V_M = 24 \text{ L.mol}^{-1}$.

^{*}La page 4 est à compléter et à rendre avec la copie

Physique: Thème: Filtres électriques (15 points)


Exercice n°1: (6.5 points)

A l'entrée du filtre (F) schématisé par la figure n°2 , on applique une tension sinusoidale $U_{\it E}(t)$ de valeur

 $U_{E\,\mathrm{max}}\,$ constante , et de frequence N réglable :

$$U_E(t) = U_{E \text{ max}} \cdot \sin(2fNt + \{)$$
.

On désigne par $U_S(t)$, la tension de sortie du filtre : $U_S(t) = U_{S \text{ max}} \cdot \sin(-2fNt) + \{ \}$).

Partie A :

- 1°) a°) Indiquer la différence entre un filtre passe bas et un filtre passe haut. (0.5 pt)
- 2°) a°) Etablir l'équation différentielle régissant $U_{S}(t)$. (0.5 pt)
- b°) Associer à chaque terme de l'équation différentielle le vecteur de Fresnel correspondant. (0.5 pt)
- c°) Faire le schéma de Fresnel de ce filtre. . (0.5 pt)
- 3°) La transmittance du filtre ainsi réalisé est : $T = \frac{1}{\sqrt{1 + \frac{1}{(2f NRC)^2}}}$
- a°) Montrer que la gain s'ecrit : $G = -10\log(1 + \frac{1}{(2fNRC)^2})$. (0.5 μ t)
- b°) Montrer que la valeur maximale $\,G_0\,$ du gain du filtre est nulle $\,(G_0=0dB).\,$ (0.5 fet)
- 4°) a°) Quelle condition doit satisfaire le gin G pour que le filtre soit passant ? (0.5 μ t)
- b°) Montrer que la fréquence de coupure N_C du filtre est : $N_C = \frac{1}{2 f RC}$ (0.5 μ)

Partie B:

Pour une tension maximale $U_{E \max}$ donnée, l'évolution du gain G du filtre en fonction, de la fréquence est donnée par la figure n°3 (voir annexe page 4). En exploitant ce graphe :

- 1°) a°) Montrer que le filtre (F) est passif. (0.5 pt)
- b°) Déterminer graphiquement la valeur de sa fréquence de coupure $N_{\mathcal{C}}$. (0.5 pt)
- c°) En déduire la bande passante du filtre. Ce filtre est -il passe haut-ou passe bas? (0.5 pt)
- 2°) a°) Déterminer la valeur de la capacité C. On donne $R=500\,\Omega etf=3.14$ (0.5 pt)
- b°) On applique à l'entrée du filtre, deux signaux (S_1) et (S_2) de fréquences respectives :

 N_1 =600Hz et N_2 =10KHz.

Préciser, en le justifiant, lequel des deux signaux est transmis. (0.5 pt)

Exercice n°2: (6.5 points)

Un filtre électrique comprend en série : un résistor de résistance R_0 réglable , un condensateur de capacité C , une bobine d'inductance L et de résistance interne r. Ce filtre est alimenté par une tension sinusoïdale de valeur maximale $U_{\it Em}$ constante , de fréquence N réglable et d'expression $u_{\it E}(t)=U_{\it E max}\,\sin(2fNt)$.

La tension de sortie est la tension aux bornes du résistor : $u_{S}(t) = U_{S\max} \sin(2fNt + \{_{us}\})$

I°) Etude théorique:

- 1°) Schématiser le circuit . Choisir un sens positif pour le courant électrique et représenter les tensions aux bornes des différents dipôles du circuit. ($0.5 \, \mu c$)
- 2°) Montrer que l'équation différentielle régissant les variations de $u_s(t)$

est
$$(1 + \frac{r}{R_0})u_S(t) + \frac{L}{R_0} \cdot \frac{du_S(t)}{dt} + \frac{1}{R_0C} \int u_S(t)dt = u_E(t)$$
 (0.5%)

- 3°) a°) Faire la construction de Fresnel relative à l'équation différentielle précédente pour $\check{S} \succ \check{S}_0$. (1 μ t)
- b°) En exploitant cette construction de Fresnel, montrer que la transmit tance T du filtre étudié est donnée par l'expression :

$$T = \frac{R_0}{R} \cdot \frac{1}{\sqrt{1 + (\frac{2f NL}{R} - \frac{1}{2f NRC})^2}} avecR = R_0 + r$$
 (0.5pt)

- c°) Ecrire , en fonction de \textit{retR}_{0} , l'expression de la transmit tance maximale \textit{T}_{0} du filtre . (0.5 μt)
- d°) En déduire que le filtre considéré est un atténuateur de tension. (0.5 pt)

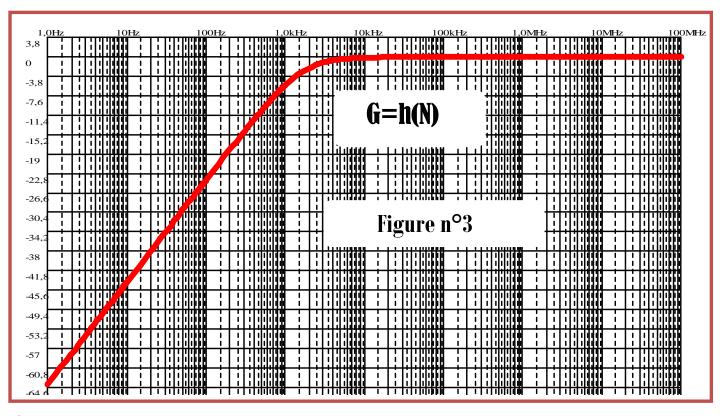
II°) Etude expérimentale:

Pour une tension $U_{\it Em}$ donnée , on fait varier la fréquence N du générateur .Pour chaque valeur de N , on mesure la tension maximale $U_{\it Sm}$ et par la suite on détermine la valeur de la transmit tance T du filtre . La courbe de la figure 4 (voir annexe page 4) traduit la variation en fonction de N.

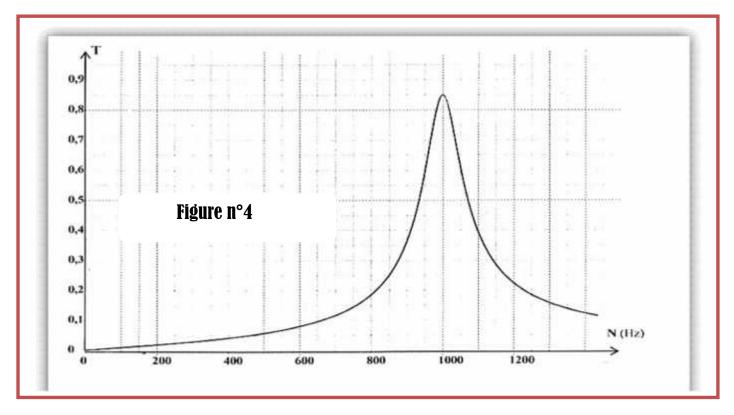
- 1°) A partir du graphe déduire la valeur de :
- a°) La transmit tance maximale $\ T_0$ du filtre . (0.5 μt)
- b°) La fréquence propre $\,N_0^{}\,{
 m du}$ filtre. (0.5 pt)
- c°) La largeur ΔN de la bande passante .Préciser en le justifiant, si le filtre est passe bas , passe haut ou passe bande. (0.5 μ L)
- 2°) Pour $\,N=N_{_{0}}\,$, le circuit est en état de résonance d'intensité .
- a°) Sachant que l'impédance du filtre est $Z=500\Omega$, montrer que la valeur de la résistance R_0 est 425 Ω . (0.5 μ t)
- b°) Sachant que L=0,8H, déterminer la valeur de la capacité C du condensateur. (0.5 pt)
- c°) Le facteur de qualité Q du filtre est donnée par : $Q = \frac{N_0}{\Delta N}$.Calculer Q. (0.5 pt)

Exercice n°3: Texte documentaire (2 points)

Les filtres passifs se caractérisent par l'usage exclusif des composants passifs. Par consequent, <u>leurs</u> <u>transmit tance ne peut pas dépasser l'unité</u>. le gain est négatif ou nul. Tandis que , les filtres actifs renferment des amplificateurs opérationnels et possèdent un gain positif.


Question:

- 1°) Définir : filtre passif, filtre actif. (0.5 pt)
- 2°) Indiquer comment est le gain pour les filtres passifs et actifs. (0.5 pt)
- 3°) Expliquer la phrase soulignée dans le texte. (1pt)


Annexe à compléter et à rendre avec la copie

Nom:.....Niveau: 4^{éme} sc.informatique

Exercice n°1:

Exercice n°2:

