Collège <u>Sadiki</u>	<u>Devoir de contrôle n° : 1</u> <u>Sciences physiques</u>	4è maths et 4è Sc-exp
Samedi 19 -11-2011	Durée : 2 heures	<u>Profs</u> : Fkih-Hrizi-Abid et Cherchari
On donnera l'expression littérale avant de passer à l'application numérique.		

- L'utilisation de la calculatrice non programmable est autorisée.
- Numéroter les questions.

Chimie (9 pts)

Au cours d'un devoir de travaux pratiques de cinétique chimique, il est demandé à trois candidats E_1 ; E_2 et E_3 de réaliser, à température constante θ_1 et à un instant t=0, le mélange d'une solution (S_1) d'iodure de potassium KI de concentration molaire C_1 et de volume V_1 =200 mL et d'une solution

(S₂) de peroxodisulfate de potassium $K_2S_2O_8$ de concentration molaire C_2 et de volume $V_2 = \frac{V_1}{4}$. Les

candidats doivent répartir le mélange sous forme de prélèvements identiques de volume V afin de les doser par une solution de thiosulfate de sodium Na₂S₂O₃ de concentration molaire C₃=0,2 mol.L⁻¹ pour suivre l'évolution de la réaction de réduction des ions iodures I par les ions peroxodisulfates $S_2O_8^{2-}$.

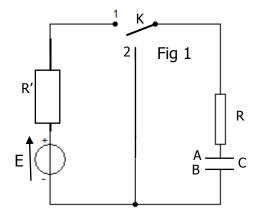
A l'instant prévu t, ils versent de l'eau distillée glacée dans l'un des prélèvements puis ils dosent la quantité de matière de diiode formé. Il est demandé au candidat :

- E₁ de tracer la courbe d'évolution de l'avancement x au cours du temps.(fig 1 Page 3 à compléter et à remettre avec la copie)
- E₂ de tracer la courbe d'évolution de la concentration molaire de diiode formé au cours du temps. (fig 2 Page 3)
- E₃ de tracer la courbe d'évolution de la quantité de matière de l'ion iodure au cours du temps. (fig3 **Page 3**).
- 1- Ecrire les équations des deux demi réactions ainsi que l'équation bilan de la réaction des ions iodures avec les ions peroxodisulfates.
- 2- Dresser le tableau d'évolution de la réaction précédente en utilisant $n_0(I^-)$ quantité de matière initiale des ions iodures et $n_0(S_2O_8^{2-})$ quantité de matière initiale des ions peroxodisulfates.
- 3- D'après le graphe de la figure :
 - 1, prélever la valeur de l'avancement final.
 - 2, prélever la valeur de la concentration molaire finale de diiode et déduire le volume V de chaque prélèvement.
 - 3, prélever la quantité de matière finale des ions iodures. Préciser le réactif limitant et déduire $n_0(I^-)$ et $n_0(S_2O_8^{2-})$.
- 4- Trouver C₁ et C₂.

5-

- a- Faire un schéma annoté du dispositif du dosage.
- b- Ecrire l'équation de la réaction de dosage puis calculer le volume V₃ de thiosulfate de sodium versé à l'équivalence à $t=t_1$ (voir fig 3).

6-


- a- Définir la vitesse instantanée d'une réaction chimique.
- b- Donner l'expression de la vitesse instantanée établie par chaque candidat pour déterminer sa valeur à partir du graphe qui l'a tracé.
- c- Déterminer la valeur de la vitesse maximale calculée par chaque candidat.
- 7- Pour étudier l'effet des facteurs cinétiques sur la vitesse de la réaction étudiée, il est demandé au candidat:
 - E₁ d'ajouter quelques gouttes d'une solution de sulfate de fer II dans le mélange et de répéter l'expérience.
 - E₂ de dissoudre une masse m d'iodure de potassium dans le mélange (sans variation de volume) et de répéter l'expérience.
 - E_3 de répéter la même expérience mais à une température $\theta_2 > \theta_1$.
 - a- Donner la définition d'un catalyseur.

b- Tracer sur le même graphe, l'allure de la courbe obtenue lors de la deuxième expérience pour chaque candidat.

Physique (13 pts)

Exercice 1 (7 pts): I-/ Le condensateur

I-/ Le condensateur de capacité ${\bf C}$ utilisé dans le montage schématisé ci-contre est alimenté par un générateur de tension supposé idéal délivrant entre ses bornes une tension ${\bf E=6V}$. Un conducteur ohmique a une résistance ${\bf R=300~\Omega}$ alors que l'autre sa résistance ${\bf R'}$ est inconnue. Le condensateur étant initialement déchargé, le commutateur K est placé sur la position 1 à un instant pris comme origine de temps et à l'aide d'un ordinateur muni d'une interface on a pu suivre l'évolution de l'intensité de courant électrique dans le circuit voir figure 2

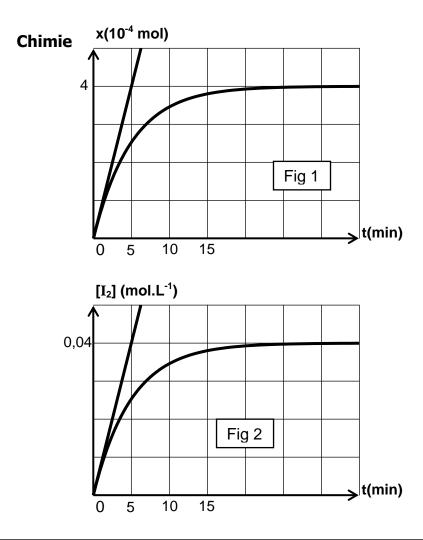
(page à compléter et à remettre avec la copie).

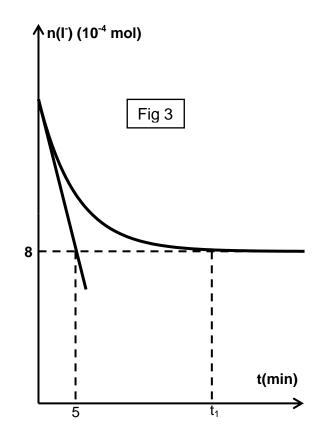
- 1°) En désignant par q la charge positive portée par l'armature A du condensateur à une date t. Indiquer sur le schéma le sens arbitraire positif du courant i(t).
- 2°) En appliquant la loi des mailles, établir l'équation différentielle régissant les variations de l'intensité du courant i(t).
- 3°) Cette équation différentielle admet pour solution: **i(t)=A.e**^{- α t} où A et α sont deux constantes positives qu'on déterminera leurs expressions.
- 4°) Déterminer l'expression de la tension aux bornes du condensateur u_{AB}(t).
- 5°) En utilisant le graphe de i(t), déterminer :
 - a- la valeur de la résistance R'.
 - b- la valeur de la constante de temps τ. Déduire la valeur de la capacité C.
- II-/ Lorsque l'intensité de courant s'annule dans le circuit, on bascule le commutateur K sur la position 2 à une date considérée comme origine de temps alors qu'on a programmé l'ordinateur pour tracer la courbe d'évolution de l'énergie dissipée dans le résistor R en fonction de u_{AB}². La courbe obtenue est donnée par la figure 3 (page à compléter et à remettre avec la copie).
- 1°) En appliquant la loi des mailles, établir l'équation différentielle régissant les variations de la tension $u_{AB}(t)$.
- 2°) La solution de l'équation différentielle précédente est $\mathbf{u}_{AB}(\mathbf{t}) = \mathbf{E} \cdot \mathbf{e}^{-\mathbf{t}/\tau}$.
- 3°) Trouver l'expression de l'intensité du courant et déduire le sens du courant réel.
- 4°) Montrer que l'énergie dissipée par effet joule dans le résistor R s'écrit sous la forme :

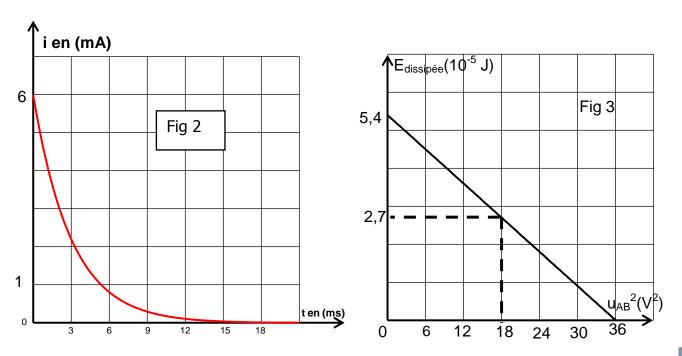
$$E_{dissip\acute{e}e} = -\frac{1}{2}C.u_{AB}^{2} + \frac{1}{2}C.E^{2}$$

- 5°) En utilisant le graphe de la figure 3:
 - a- Retrouver la valeur de la capacité du condensateur.
 - b- Déterminer l'instant t pour lequel l'énergie dissipée est égale à l'énergie emmagasinée dans le condensateur

Exercice 2 (4 pts):


Un condensateur plan est formé par deux feuilles de surface en regard $S = 1 \text{ m}^2$, séparées par un isolant de permittivité absolue ε et d'épaisseur e= 0,1 mm.


- 1°) On charge le condensateur, à l'aide d'un générateur de courant continu d'intensité $I = 1,8 \mu A$. On ferme le circuit à l'aide d'un interrupteur à l'instant pris comme origine du temps (t=0s).
 - a) Représenter le schéma d'un montage qui permet de suivre l'évolution de la tension aux bornes du condensateur.
 - b) Déterminer la valeur de la charge q accumulée sur l'armature positive du condensateur à t=20s.
 - c) La tension aux bornes du condensateur prend la valeur u_c=12 V à l'instant t=20s. Calculer la capacité C du condensateur.
 - d) Calculer la permittivité électrique absolue **£** de l'isolant.
- 2°) La valeur de l'énergie électrique maximale qui peut être accumulée par le condensateur est égale à 3.75.10⁻³ J.
 - a) Calculer la tension de claquage du condensateur.
 - b) la durée maximale de la charge du condensateur.


Page à compléter et à remettre avec la copie

Nom: Classe:

Physique

