L.I.K.OUSSELTIA

2013***2014

Mr: ABDAOUI.H

4Sc.Exp.

Physique -chimie (Durée : 2H)

Devoir de contrôle N: 2

CHIMIE: (9 points)

La température est supposé constante est égale à 25°C. Le produit ionique de l'eau est Ke=10⁻¹⁴

Exercice 1 (4 pts):

On considère trois solutions aqueuses S_1 ; S_2 et S_3 d'acides respectives A_1H , A_2H et A_3H . On donne dans le tableau suivant le pH et la concentration molaire de chaque solution.

Solution	A₁H	A ₂ H	A ₃ H
Concentration molaire (mol.L ⁻¹)	5.10 ⁻²	10 ⁻¹	2.10 ⁻³
pН	2,55	1	3,75

- 1- Etablir l'expression du taux d'avancement final τ_f de la réaction de dissociation d'un acide **AH** dans l'eau en fonction de **C** et **pH**.
- **2-** Calculer le taux d'avancement final τ_f de chaque acide.
- 3- Montrer que l'un des acides est fort et que les autres sont faibles.
- 4- Peut-on classer ces trois acides par ordre de force d'acidité croissante ? Si non pourquoi ?
- **5-** a- Etablir l'expression de la constante d'acidité **Ka** d'un couple acide base **AH/A**⁻ en fonction du taux d'avancement final τ_f et de la concentration molaire **C**.
- b- Calculer le **pKa** des couples correspondant aux acides faibles.
- c- Classer alors les trois acides par force d'acidité décroissante.

Exercice 2 (5 pts):

Le taux d'avancement de l'acide méthanoïque HCOOH dans une solution aqueuse de **pH=2,4** est τ_f =**0,04.**

- **1-**a- Ecrire l'équation de la réaction de dissociation de l'acide, et montrer que le pH de la solution vérifie la relation $\mathbf{10^{-pH}} = \frac{\mathbf{1-\tau f}}{\tau f}$ Ka ; Ka étant la constante d'acidité du couple acide-base correspondant à l'acide méthanoïque.
 - b- Calculer la valeur du pKa de ce couple
- **2-** On se propose d'étudier l'évolution du **pH** qui accompagne l'addition progressive d'une solution aqueuse de soude de concentration molaire $C_b=5.10^{-2}$ mol.L⁻¹ à un volume $V_a=10$ mL de la solution d'acide précédente.
 - a- Représenter sur un schéma annoté, le dispositif expérimental qui permet la réalisation de cette étude.
 - b- Ecrire l'équation de la réaction acide-base et montrer qu'elle est totale.
- **3-** Après la prise de quelques mesures, le déroulement de l'expérience est interrompu par la coupure du courant électrique (le pH-mètre ne fonctionne plus). Le dernier couple de valeurs enregistré est $(V_b=10\text{mL}, pH=3,8)$

Au mélange obtenu on ajoute **10** autres **mL** de la solution aqueuse de soude et on agite énergétiquement. Le volume total est par la suite partagé dans 3 béchers

Au contenu de chacun des béchers sont ajoutées quelques gouttes de l'un des indicateurs colorés suivants. Les informations correspondantes sont rassemblées dans le tableau ci-dessous :

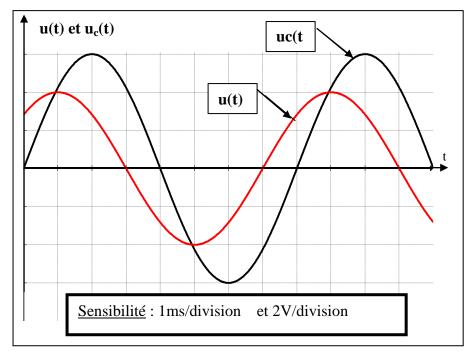
Indicateurs	Teinte acide	Teinte basique	Zone de virage	Coloration du mélange
B.B.T.	Jaune	Bleu	$6,2 \le pH \le 7,6$	Bleu
Rouge de crésol	Jaune	Rouge	$7,2 \le pH \le 8,6$	Orangée
Phénolphtaléine	Incolore	Rose	$8 \le pH \le 10$	Incolore

- a- Montrer que le mélange partagé dans les trois béchers correspond à l'acido-basique?
- b- Donner, en s'aidant du tableau précédent, un encadrement du pH de ce mélange
- c- Représenter l'allure de la courbe traduisant la variation du pH en fonction du volume de soude versé. Préciser les coordonnées des points remarquables

Physique: (11 points)

Exercice 1:(5pts)

Un oscillateur électrique est constitué des dipôles suivants associés en série :


Un résistor de résistance R

Une bobine d'inductance L et de résistance interne négligeable.

Un condensateur de capacité C et un ampèremètre.

Un générateur (GBF) impose aux bornes de ce circuit une tension alternative sinusoïdale $u(t)=Um\sin(2\pi N.t)$ de fréquence N variable et d'amplitude Um maintenue constante. Soit $u_C(t)$ la tension aux bornes du condensateur. Un oscilloscope bicourbe convenablement branché permet de visualiser simultanément les tensions u(t) et $u_C(t)$.

- 1- Faire un schéma du montage représentant les connections nécessaires avec l'oscilloscope afin de visualiser les tensions u (t) sur (Y1) et u_C (t) sur (Y2).
- 2- Pour une fréquence N₁.l'ampèremètre indique un courant d'intensité efficace I=√2.10⁻²A et sur l'écran de l'oscilloscope on observe les oscillogrammes de la figure correspondant aux tensions u(t) et u_C(t).

- a- Déterminer la fréquence N_1 , l'amplitude Um de la tension u(t), l'amplitude U_{Cm} de la tension $u_C(t)$ et les phases initiales de u(t) et $u_C(t)$.
- b- Déterminer la valeur de la capacité C.
- c- Montrer que la tension u(t) est en retard de $\pi/4$ par rapport au courant i(t).
- d- Quelle est la nature du circuit électrique
- e- Effectuer la construction de Fresnel relative à ce circuit

1cm \longrightarrow 1V et déduire que R=100 $\sqrt{2} \Omega$ et déterminer la valeur de L.

- 3- Pour une fréquence N₂, on s'aperçoit que l'ampèremètre indique I₂=2 √2.10⁻² A.
- a- Montrer que le circuit est le siège d'une résonance d'intensité.
- b- Représenter la construction de Fresnel correspondante (même échelle)
- c- Déterminer l'expression de i(t).
- d- Quelle sera la tension indiquée par un voltmètre branché aux bornes de l'ensemble (bobine+condensateur)
- e- Calculer le coefficient de surtension et déduire l'expression de la tension aux bornes du condensateur u_C(t).
- f- Calculer la puissance moyenne consommée par chaque élément du circuit.
- **4-** Pour une fréquence N₃, l'amplitude de la tension u_C(t) passe par une valeur maximale.

Devoir.tn

S. tous les niveaux

- a. Etablir l'équation différentielle en fonction uc, $\frac{duc}{dt}$, $\frac{d^2uc}{dt^2}$, R, L,C et u(t)
- b. En utilisant la construction de Fresnel, Déterminer les expressions de U_{Cm} et $tg(\phi u \phi uc)$
- c. Déterminer la valeur de N₃.
- 5- On veut tracer la courbe de résonance d'intensité en fonction de la fréquence
- a- Décrire une méthode expérimentale permettant d'étudier la résonance d'intensité.
- b- Tracer l'allure de la courbe en indiquant les points caractéristiques

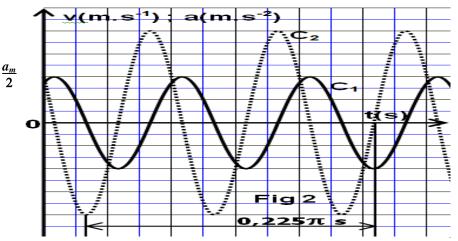
Exercice 2: (6 pts):

<u>Partie A :</u> Un solide (S) de masse **m=100g** est attaché à l'une des extrémités d'un ressort horizontal, parfaitement élastique, de constante de raideur **K** et de masse négligeable devant celle du solide, l'autre extrémité du ressort étant fixe (**fig1**). On étudie le

mouvement du solide (S) relativement à un repère galiléen (o, 1)

horizontal, d'origine O coïncidant avec la position d'équilibre du centre d'inertie du solide.

On écarte le solide (S) de sa position d'équilibre dans le sens négatif d'une distance \mathbf{x}_0 puis à un instant pris comme origine du temps on le lance avec une vitesse initiale dans le sens positif. Au cours de son mouvement le solide (S) n'est soumis à aucune force de frottement.


- 1-
- a- Etablir l'équation différentielle régissant les variations de l'élongation x(t).
- b- Sachant que la solution de l'équation différentielle s'écrit sous la forme $\mathbf{x}(t) = \mathbf{X}_m \sin(\omega_0 t + \varphi_x)$, déterminer l'expression de ω_0 .
- c- Montrer que $\mathbf{v}^2 + \omega_0^2 \mathbf{x}^2 = \omega_0^2 \mathbf{X}_m^2$
 - 2- On donne le graphe représentant l'évolution au cours du temps de la vitesse et de l'accélération du centre d'inertie du solide (S). (figure 2)
 - a- Identifier en le justifiant les courbes (C_1) et (C_2) .
 - b- Déterminer à partir du graphe les expressions de l'accélération a(t) et de la vitesse v(t).
 - c- En déduire la valeur de la raideur K du ressort, l'amplitude des élongations X_m et la phase initiale ϕ_x .
 - 3- L'énergie totale du système {solide+ressort} est E= Ec+Ep.
 - a- Montrer que l'énergie totale est constante et l'exprimer en fonction de ${\bf K}$ et ${\bf X}_m$.
 - b- Calculer sa valeur.
 - c- Etablir l'expression de l'énergie potentielle **Ep** du système {solide+ressort} en fonction de

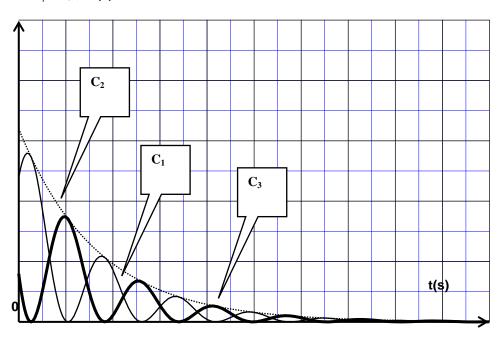
K, Xm, ω_0 , t et ϕ_x .

d- Représenter Ep(t). On donne l'échelle suivante :

• $10^{-2} J \rightarrow 1 cm$

• 0.05π s \rightarrow 4 cm

Echelle:


Vitesse : $0.2 \text{ m.s}^{-1} \rightarrow 1 \text{ carreau}$ Accélération : $2 \text{ m.s}^{-2} \rightarrow 1 \text{ carreau}$

Partie B:

Dans cette partie, le solide (S) est soumis à une force de frottement de type visqueux $\overrightarrow{f} = -h\overrightarrow{v}$ ou \mathbf{h} est une constante positive.

- 1-Établir l'équation différentielle de mouvement du solide (S) régissant les variations de son élongation **x(t)**.
- **2-** Montrer que l'énergie totale du système $S_0=\{(S)+ressort\}$ n'est pas conservée.
- **3-** À l'aide d'un dispositif approprié, on a enregistré les variations des énergies **Ep, Ec** et **E** en fonction du temps ; on a obtenu les graphes suivants :

 E_p ; E_C ; E(J)

Faire correspondre, en le justifiant, à chaque énergie la courbe correspondante.