LYCEE TATAOUINE 2 Le: 06/02/2015 DEVOIR DE CONTROLE N°2

EPREUVE: SCIENCES PHYSIQUES

CLASSE: 4^{éme} Sciences Expérimentales

Prof: HANDOURA Naceur

Durée: 2 Heures

CHIMIE (9pts)

Exercice N°1 (5,5pts):

 1° /a- Compléter le tableau suivant en indiquant la formule de la base ou de l'acide conjuguée de chacun des couples et en calculant les valeurs de K_b et du pKa.

Forme acide	NH ₃		НСООН	HNO ₂
Forme basique		CℓO⁻		
pka		7,5		3,3
k_b	6,3.10 ⁻¹⁰		5,6.10 ⁻¹¹	

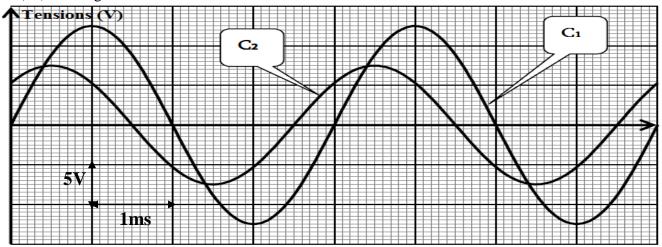
- b- Classer ces couples acides bases par force de basicité croissante.
- 2°/ L'acide NH₃, de constante d'acidité Ka₁, réagit avec la base conjuguée de HCOOH de constante d'acidité Ka₃.
 - a- Ecrire l'équation de cette réaction.
- b- Exprimer sa constante d'équilibre K en fonction des concentrations molaires. Montrer qu'elle peut s'écrire sous la forme $K = 10^{pkb1-pka3-pke}$. Calculer sa valeur. Comparer la force de deux acides.
- 3°/ On considère une solution aqueuse d'acide méthanoïque (HCOOH) de concentration molaire C=10⁻² mol.L⁻¹. La mesure du pH donne pH=2,9.
 - a- Ecrire l'équation de la réaction de l'acide méthanoïque avec l'eau.
 - b- En négligeant les ions H₃O⁺ provenant de l'eau, dresser le tableau d'avancement volumique de la réaction.
 - α Etablir l'expression du taux d'avancement final τ_f de la réaction en fonction du pH et C.
 - β- En déduire si l'acide méthanoïque est fort ou faible.
 - c-Calculer les concentrations des espèces chimiques- autres que l'eau- présente dans la solution.
 - d- Retrouver la valeur du pka de couple (HCOOH/HCOO⁻).

Exercice N°2 (3,5pts):

Deux solutions (S₁) de soude NaOH et (S₂) d'ammoniac NH₃ de même concentration $C = 10^{-2}$ mol.L⁻¹ ont pour pH respectives $pH_1 = 12$ et $pH_2 = 10,6$.

- 1°/ Montrer que NaOH est une base forte et que NH₃ est base faible.
- 2°/ A 10mL de (S₁) on ajoute 40mL d'eau. Déterminer pH de la solution diluée.
- 3°/ On considère la solution (S₂) d'ammoniac.
 - a- Ecrire l'équation d'ionisation de l'ammoniac dans l'eau.
 - b- Dresser le tableau descriptif d'évolution de la réaction d'ionisation.
 - c- Donner l'expression du taux d'avancement final τ_f en fonction de pH, pke et C.
 - d- Etablir l'expression de la constante d'acidité ka du couple (NH₄⁺/NH₃) en fonction de [H₃O⁺] et τ_f.
 - e- Sachant que la base est faiblement ionisée, déduire que : $pH = \frac{1}{2} (pka + pke + logC)$.
 - f- Calculer pka.

PHYSIQUE (11pts):


Exercice N°1 (7pts):

Un circuit électrique est formé par un résistor de résistance $\mathbf{R} = \mathbf{50}\Omega$, une bobine d'inductance \mathbf{L} et de résistance \mathbf{r} et un condensateur de capacité $\mathbf{C} = \mathbf{4\mu}\mathbf{F}$, placés en série.

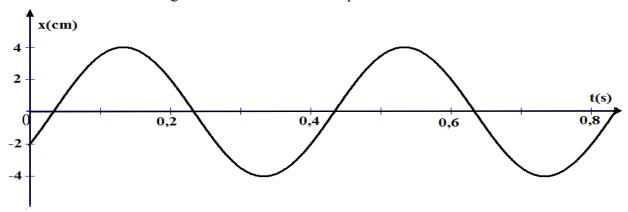
L'ensemble est alimenté par un générateur basse fréquence délivrant une tension $\mathbf{u}(t) = \mathbf{U_m} \sin(2\pi N t)$ d'amplitude $\mathbf{U_m}$ constante et de fréquence N réglable. A l'aide d'un oscilloscope bicourbe, on visualise la tension $\mathbf{u}(t)$ aux bornes de (GBF) sur la voie $\mathbf{Y_1}$ et la tension $\mathbf{u_D}(t)$ aux bornes d'un dipôle D sur la voie $\mathbf{Y_2}$.

Le dipôle D peut être soit une bobine, soit un condensateur ou bien un résistor.

- 1°/ A fin de déterminer qualitativement la nature de dipôle D, on fait varier la fréquence N, on constate que le déphasage $\Delta \phi = \phi_{uD} \phi_u$ est toujours négatif.
 - a- Justifier que D ne peut pas être un résistor.
- b- Justifier alors la nature de dipôle D.
- 2°/a- Représenter le schéma du montage permettant de visualiser u_D(t) et u(t) en indiquant les connexions nécessaires à réaliser.
 - b- Etablir l'équation différentielle régissant les variations de l'intensité du courant i.
- 3° / On maintient la fréquence de GBF à une valeur particulier N_1 de façon à obtenir les courbes (C_1) et (C_2) de la figure suivante.

- a- Montrer que la courbe (C_1) représente $u_D(t)$.
- b- Déterminer la fréquence N_1 et le déphasage $\Delta \phi = \phi_{uD} \phi_u$.
- c- Déduire le déphasage $\Delta \varphi = \varphi_i \varphi_u$. le circuit est-il inductif ou capacitif ?
- 4°/ Calculer l'intensité maximale I_{1m} qui traverse le circuit. Déduire la valeur de l'impédance Z.
- 5°/ A partir de la construction de Fresnel déterminer :
 - a- La valeur de la résistance interne r.
 - b- La valeur de l'inductance L.
- 6° / En faisant varier la fréquence N, on constate que pour une valeur N= N_2 , les deux courbes u(t) et $u_D(t)$ deviennent en quadrature de phase.
 - a- Préciser l'état du circuit.
 - b- Calculer N₂, I_{2m} (intensité maximale qui traverse le circuit). Déduire i(t).
 - c- Calculer le facteur de surtension Q.
- 7°/ Pour une fréquence N= N₃, un voltmètre branché parallèlement avec le dipôle D indique une tension maximale.
 - a- Préciser l'état du circuit.
 - b- N₃ est-elle supérieure, inférieure ou égale à N₂. Justifier.
 - c- Calculer N₃.

Exercice N°2 (4pts):


Un ressort (R) à spires non jointives de masse négligeable de raideur K est placé sur un plan horizontal parfaitement lisse. L'une des extrémités du ressort est fixe. A l'autre extrémité est lié à un solide (S) supposé ponctuel de masse **m=80g**.

A l'équilibre le solide (S) coïncide avec le point O, origine de repère (o,i). On déplace le solide de sa position d'équilibre jusqu'au point M_0 d'abscisse x_0 puis on l'abandonne à t=0s avec une vitesse initiale v_0 .

1°/ Etablir l'équation différentielle régissant le mouvement du solide (S) en fonction de x.

2°/ L'enregistrement du mouvement du centre d'inertie du solide (S) nous donne la courbe suivante qui traduit l'évolution de l'élongation x en fonction du temps.

- a- Quelle est la nature du mouvement du solide (S).
- b- Déterminer la valeur de la pulsation propre w_0 puis déduire la raideur K du ressort. ($\pi^2 = 10$).
- c- Déterminer l'équation horaire x(t) puis celle de la vitesse v(t).
- d- De quel coté est écarté le solide (S) à t= 0s. Calculer la valeur de la vitesse initiale v₀.
- 3°/a- Exprimer l'énergie mécanique E du système {solide + ressort} en fonction de m, k, x et v.
 - b- Montrer que ce système est conservatif. Calculer la valeur de E.
 - c-Représenter les courbes : E=f(t) ; $E_{pe}=g(t)$ et $E_{C}=h(t)$.
- 4° / Au cours de son mouvement, (S) est soumis à des forces des frottements de type visqueux équivalents à une force f = -hv ou h est une constante positive et v la vitesse du solide.
 - a- Etablir l'équation différentielle du mouvement en fonction de x.
 - b- Montrer que l'oscillateur perd de l'énergie au cours de mouvement.
 - c- On déplace de nouveau le solide (S) jusqu'au point M_0 et l'abandonne sans vitesse initiale à t=0s. On constate que le solide effectue quelques oscillations puis s'arrête.
 - De quel régime d'oscillation s'agit-il?
 - Calculer l'énergie dissipée entre t=0s et t₁= 2T (T : C'est le pseudo période) sachant qu'à l'instant t₁ on a x₁= -1,5cm.

BON TRAVAIL