Lycée mahmoud El Messadi Nabeul	Devoir de contrôle N°2	Le 26/02/2016
Prof : Mr Ben Sidhom Mongi	4 ^{ème} sc-exp	Durée : 2heures

Exercice N°1(5 points)

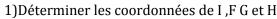
1) Calculer les intégrales $A = \int_0^1 t(1-t^2)^4 dt$, $B = \int_0^{\frac{\pi}{6}} \sin^2 x dx$, $C = \int_{-1}^0 \frac{3t}{(1-t)^4} dt$

2) Calculer $D = \int_0^{\sqrt{3}} \frac{t^3}{\sqrt{1+t^2}} dt$ en utilisant une intégration par parties

Exercice N°2 (7points)

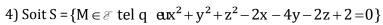
Dans la figure ci –contre ABCDEFGH est un parallélépipède droit Tel que AB = 1, AD = 2 et AE = 1.On note I le milieu de [AD]

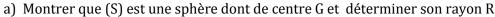
R=(A, \overrightarrow{AB} , \overrightarrow{AI} , \overrightarrow{AE}) est un repère orthonormé de l'espace.

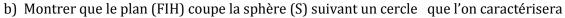


2)Montrer que le volume du tétraèdre GFIH est égal à $\frac{1}{3}$.

3)a)Montrer que le plan (FIH) à pour équation : 2x+y-z-1=0 b)Calculer la distance du point G au plan (FIH)







c) Ecrire une représentation paramétrique de l'axe Δ du cercle circonscrit au triangle ABI

d) Montrer que Δ coupe S en deux points dont on déterminera les coordonnées.

5) a) Ecrire les équations cartésiennes des plans médiateur de [AE], [AB] et [BI]

b) Ecrire l'équation cartésienne de la sphère Γ circonscrit au tétra èdre ABIE

Exercice N°3 (8points)

dans un repère orthonormé (0, i, j) (unité 4cm)

1)a/ Calculer f'(x) et Dresser le tableau de variation de f

b/ Déterminer la position de \mathscr{C}_f par rapport à la droite Δ d'équation y=x

2)a/Montrer que f réalise une bijection de]-1,1 [sur un intervalle J à préciser.

b/ Tracer $\mathscr{C}_{f^{-1}}$ la courbe de sa fonction réciproque f^{-1} dans le même repère.

3) a/Soit g(x)= $\int_0^x f(t) dt$, $x \in [0,1]$. Montrer que g est définie et dérivable sur [0,1] et calculer g'(x)

b/ Soit F la fonction définie sur $[0,\frac{\pi}{2}$ [par $F(x) = \int_0^{\sqrt{\sin x}} f(t) dt$.

Montrer que F dérivable sur $]0,\frac{\pi}{2}$ [et calculer F '(x).

c/ En déduire que pour tout x de $[0,\frac{\pi}{2}]$ [on a $F(x) = \frac{1}{2}x$ et calculer $B = \int_0^{\sqrt[4]{2}} f(t)dt$

d/ Calculer en cm² l'aire \mathcal{A} de la partie du plan limitée par \mathscr{C}_f et les droites d'équation y=0, x=0 et $x=\frac{\sqrt{2}}{2}$ en déduire l'aire \mathcal{A} ' de la partie du plan limitée par $\mathscr{C}_{f^{-1}}$ et les droites d'équation y=0, x=0 et $x=\frac{\sqrt{2}}{\sqrt{3}}$

4) Soit $\lambda \in \left[\frac{\pi}{6}, \frac{\pi}{2}\right]$ on pose $I(\lambda) = \int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{\sin \lambda}}{2}} \frac{\sqrt{1-t^4}}{t^3} dt$

A l'aide d'une intégration par partie, calculer $l(\lambda)$

