Lycée 15 octobre Sejenene

4^{éme}SC.exp

Devoir de contrôle n : 3

Enseignante:

Mme El Bsir, Maâlaoui. Zina

Durée 2h

2017-2018

en

Sciences de la vie et de la terre

Première partie (12 pts)

Exercice 1: (6pts) QCM

Pour chacun des items suivants, il peut y avoir une (ou deux) réponse(s) correcte(s). Indiquez <u>sur un tableau</u> la (ou les) lettre (s)correspondante(s) à la (ou aux) réponse(s) exacte(s).

Toute réponse fausse annule la note attribuée à l'item considéré.

1/ Dans une cellule nerveuse au repos:

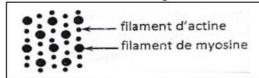
- a- les ions Na⁺ qui entrent et qui sortent sont à égalité.
- b- la membrane plasmique présente à la fois un transport passif et un transport actif.
- c- la pompe Na⁺ et K⁺ est active.
- d- les canaux voltage-dépendants aux ions Na⁺ et K⁺sont ouverts.

2/ Le potentiel post-synaptique :

- a- est codé en modulation de fréquence.
- b- résulte de l'action d'un neurotransmetteur.
- c- est propageable sur une courte distance en conservant la même amplitude.
- d- fait intervenir des canaux chimio-dépendants.

3/ Le document suivant représente le dispositif expérimental et les résultats des différentes stimulations portés sur les neurones A, B et C enregistrés au niveau de l'oscilloscope O. Ces résultats montrent que.

Dispositif expérimental	Expérience	ddp en (mV)
Neurone A Stimulation	Stimulation de la terminaison axonique du neurone A.	- 65
Neurone D	Stimulations simultanées des terminaisons axoniques des neurones A et B.	-75
Stimulation Oscilloscope Neurone C	Stimulations simultanées des terminaisons axoniques des neurones B et C.	-70

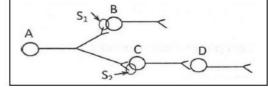

- a- la synapse B-D est excitatrice.
- b- la synapse B-D est inhibitrice.
- c- la synapse C-D est excitatrice.
- d- la synapse C-D est inhibitrice.

4/ La coordination musculaire:

- a- est le résultat de la naissance d'un potentiel d'action musculaire à partir d'un potentiel d'action nerveux.
- b- est particulièrement visible au niveau des muscles antagonistes où l'étirement de l'un déclenche automatiquement la contraction de l'autre.
- c- est obtenue par innervation réciproque des muscles antagonistes.
- d- est accompagnée d'une chute du tonus des muscles antagonistes.

5/ Le document ci-contre représente une coupe transversale schématique réalisée au niveau:

- a- de la strie Z d'un sarcomère.
- b- de la bande H d'un sarcomère.
- c- du disque sombre d'un sarcomère.
- d- du disque clair d'un sarcomère.



6/ Un fuseau neuromusculaire soumis à une série de stimulations toutes efficaces d'intensité croissante permet d'enregistrer au niveau de l'axone du neurone sensitif des potentiels d'action:

- a- d'amplitude constante.
- b- de fréquence constante.
- c- d'amplitude décroissante.
- d- de fréquence croissante.

7/ Le document suivant représente un circuit nerveux de quatre neurones. En stimulant efficacement l'axone du neurone A, on enregistre une ddp de -50 mV au niveau du corps cellulaire du neurone B et de -75 mV au niveau du corps cellulaire du neurone D. Ceci montre :

- a- que la synapse S1 est inhibitrice.
- b- que la synapse S2 est inhibitrice.
- c- que le neurone B est un neurone excitateur.
- d- qu'un potentiel d'action à parcouru l'axone du neurone C.

8/ Les canaux chimio-dépendants à CI :

- a- s'ouvrent suite à une entrée massive de neurotransmetteur dans l'élément post-synaptique.
- b- assurent un transport passif des ions Cl.
- c- sont responsables de l'hyperpolarisation de l'élément post-synaptique.
- d- existent au niveau de toutes les synapses inhibitrices.

9/ Le réflexe myotatique :

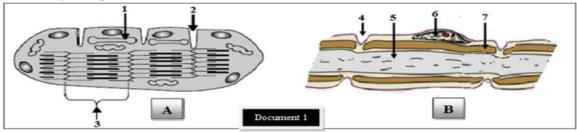
- a- est monosynaptique.
- b- est poly synaptique
- c- est assuré par un neurone sensitif et deux motoneurones.
- d- est un acte volontaire qui se produit en réponse à un stimulus.

10/ An niveau de la fibre musculaire, l'accumulation de l'acide lactique témoigne :

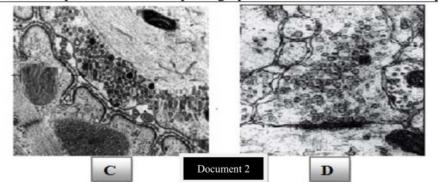
- a- d'un déficit de dioxygène.
- b- d'une production lente d'ATP.
- c- d'une production importante d'ATP.
- d- d'une production rapide d'ATP.

11/ soit le circuit nerveux suivant :

une excitation efficace en S_1 donne un potentiel d'action en O_1 et un potentiel d'action en O_2 , alors que la stimulation efficace en S_2 donne un potentiel de repos en O_1 et un potentiel d'action en O_2 , on déduit que :

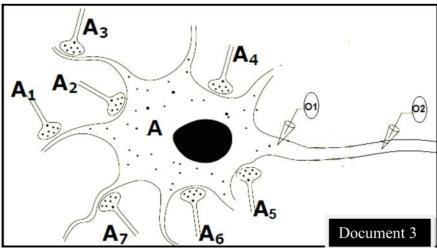

- a- dans ce circuit, le message nerveux est unidirectionnel.
- b- dans ce circuit, le message nerveux est bidirectionnel.
- c- la voie correspondante à ce circuit est motrice.
- d- la voie correspondante à ce circuit est sensitive.

12/ Le raccourcissement du sarcomère au cours de sa contraction résulte :


- a- du raccourcissement des filaments de myosine.
- b- du raccourcissement des filaments d'actine.
- c- du glissement des filaments d'actine le long des filaments de myosine.
- d- du glissement des filaments de myosine le long des filaments d'actine.

Exercice 2: (6pts) QROC

A] Le document 1 suivant représente deux schémas simplifiés de deux structures A et B intervenant dans le réflexe myotatique.


- 1) Légendez les schémas en reportant les numéros de 1 à 7 sur vos copies.
- 2) Identifiez les structures A et B.
- 3) Rappelez les propriétés de chacune de ces structures en relation avec leurs rôles dans le reflexe myotatique.
- 4) Expliquez le fonctionnement de la structure A en rapport avec ses particularités structurales.
- B] Le document 2 suivant représente les microphotographies C et D de deux zones de jonction différentes

- 1) Identifiez les zones C et D.
- 2) Faites une comparaison entre ces zones du point de vue structural et fonctionnel.

Deuxième partie (8 pts)

Afin d'étudier les particularités et les modalités de la transmission du message nerveux au niveau des synapses, on considère le neurone multipolaire **A** du document 3, sur lequel, 7 terminaisons axoniques font jonction.

On stimule isolement les 7 terminaisons axoniques et on enregistre l'amplitude des phénomènes électriques obtenus au niveau de l'oscilloscope O1. Les résultats obtenus sont résumés sur le tableau suivant.

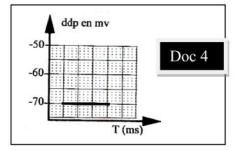
Stimulation	A1	A2	A3	A4	A5	A6	A7
Amplitude (valeur algébrique en mv)	+8	-3	+7	+10	-4	-3	+5

Première série d'expériences :

Expérience 1	on stimule simultanément les terminaisons axoniques des 7 neurones prés-synaptiques.
Expérience 2	On applique trois stimulations efficaces rapprochées sur la terminaison axonique du
	neurone A1

Expérience 3	On applique trois stimulations efficaces rapprochées sur la terminaison axonique du neurone A7
Expérience 4	On applique quatre stimulations efficaces rapprochées sur la terminaison axonique du neurone A5
Expérience 5	On applique simultanément deux stimulations efficaces et rapprochées sur chacune des terminaisons axoniques des neurones A4 eA6

1) Pour chacune des expériences de 1 à 5, indiquez la nature du potentiel obtenu en O1 et O2, représentez et expliquez l'enregistrement. (présentez votre réponse sous forme d'un tableau)


Expérience	1	2	3	4	5
Nature du potentiel		0			
Représentation					
Explication					

- 2) Proposez une expérience permettant d'obtenir un potentiel de repos au niveau de O1, en stimulant efficacement 4 neurones présynaptiques.
- 3) Déduisez le rôle du neurone A.

Deuxième série d'expériences :

Expérience 6

On injecte une substance X dans la fente de la synapse A3-A, puis on porte une stimulation efficace sur la terminaison du neurone A3, on observe au niveau de O₁ l'enregistrement du document 4 suivant.

- 4) Emettez deux hypothèses concernant l'action de la substance X.
- 5) Proposez une expérience permettant de vérifier l'une de ces deux hypothèses.

Expérience 7

On a pu extraire une substance Y de des vésicules synaptiques de la terminaison axonique A1. On réalise avec cette substance, 3 expériences, dont les résultats sont présentés dans le tableau suivant.

	- 20	Enregistrements au niveau de O2
Expérience 8	Injection d'une dose D1 de la substance Y dans la fente synaptique A1-A	ddp (mV) -40 -70 temps en ms
Expérience 9	Injection d'une dose D2>D1 de la substance Y dans la fente synaptique A1-A	-40 -70 temps en ms
Expérience 10	Injection d'une dose D2 de la substance S dans la fente synaptique A2 – A	-40 -70 temps en ms

- 6) A partir de l'analyse des expériences 8, 9 et10 :
 - a- Indiquez la nature du signal au niveau de la synapse neuro-neuronique.
 - b- Déduisez le type de codage de ce signal.
 - c- Dégagez une propriété de la transmission synaptique.

Bon trabail