SERIE N° 8

EXERCICE N°1:

On considère la suite réelle (u_n) définie sur N par : $\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{3}{\sqrt{6 - u_n^2}} \end{cases}$

- 1°) Calculer u_1 et u_2 .
- 2°) a-Montrer que $\forall n \in \mathbb{N}$ on a : $0 \le u_n < \sqrt{3}$.
 - b-Montrer que (u_n) est une suite croissante.
 - c- En déduire que (u_n) est convergente et calculer sa limite.
- 3°) Soit (v_n) la suite définie sur N par : $v_n = \frac{u_n^2}{3 u_n^2}$
 - a-Montrer que (v_n) est une suite arithmétique de raison 1.
 - b-Exprimer v_n en fonction de n. En déduire u_n en fonction de n.
 - c-Retrouver alors la limite de u_n .

EXERCICE N°3:

Soit α un nombre réel appartenant à l'intervalle]0,1[. On considère la suite

$$(u_n)$$
 définie sur N par :
$$\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{(1+\alpha).u_n - \alpha}{u_n} \end{cases}$$

- 1°) a-Montrer que pour tout entier n, on a : $u_n \ge 1$.
 - b-Montrer que (u_n) est une suite décroissante.
 - c- En déduire que (u_n) est convergente et trouver sa limite.
- 2°) Soit (v_n) la suite définie sur N par : $v_n = \frac{u_n 1}{u_n \alpha}$.
 - a-Montrer que (v_n) est une suite géométrique de raison α .
 - b-Exprimer v_n en fonction de n et α . En déduire l'expression de u_n en fonction de n et α .
 - c-Retrouver alors la limite de la suite u_n quand n tends vers $+\infty$.