SERIE N° 11

EXERCICE N°1:

On considère la suite réelle (u_n) définie sur N par : $\begin{cases} u_0 = 4 \\ u_{n+1} = \sqrt{12 - u_n} \end{cases}$

- 1°) Vérifier que $\forall n \in \mathbb{N} \; ; \; u_{n+1} 3 = \frac{3 u_n}{\sqrt{12 u_n} + 3} \, .$
- 2°) Montrer que $\forall n \in \mathbb{N}$; $\left|u_{n+1} 3\right| \leq \frac{1}{3} \left|u_n 3\right|$.
- 3°) Montrer que $\forall n \in \mathbb{N}$; $\left|u_{n+1} 3\right| \leq \left(\frac{1}{3}\right)^n$.
- 4°) Déterminer la limite de u_n quand n tends vers $+\infty$.

EXERCICE N°2:

A/ Soit g la fonction <u>définie sur</u> $]0,+\infty[$ <u>par</u> $g(x)=2x\log x-x-1$.

- 1°) a-Calculer la limite de g(x) en $+\infty$.
 - b-Dresser le tableau de variation de $\,g\,$.
- 2°) a- Montrer que l'équation g(x)=0 admet dans $]0,+\infty[$ une solution unique α . Vérifier que : $2<\alpha<2.1$.
 - b- En déduire le signe de g(x).

B/ Soit \underline{f} la fonction définie sur $\underline{[0, +\infty[par f(x) = \begin{cases} x^2 (\log x - 1) - x & si \ x > 0 \\ f(0) = 0 \end{cases}}$

On désiggne par $\underline{\xi_f}$ la courbe représentative de \underline{f} dans un RON (O, \vec{i}, \vec{j}) .

- 1°) a- Montrer que f _est continue à droite en 0.
 - b-Montrer que f est dérivable à droite $\underline{\text{en 0}}$.
 - c- Ecrire une équation de la demi-tangente à $\xi_{\scriptscriptstyle f}$ à droite au point ${\it O}$.
- 2°) a-Montrer que $\forall x > 0$ on a f'(x) = g(x).
 - b-Calculer: $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$.
 - c-Dresser le tableau des variation de \underline{f} et montrer que $f(\alpha) = -\frac{\alpha^2 + \beta}{2}$.
- 3°) Soit D la droite d'équation : y = -x.
 - a- Etudier la position relatives de $\xi_{\scriptscriptstyle f}$ et D .
 - b-Tracer ξ_f et D dans le même $RON(O, \vec{i}, \vec{j})$ ($prendre \ \alpha \approx 2$).

1

EXERCICE N°3:

Partie A: Soit g la fonction <u>définie sur</u> $]0,+\infty[$ par $g(x)=x+1+\log x$.

- 1°) Dresser le tableau de variation de $\,g\,$.
- a-Montrer que l'équation g(x) = 0 admet dans $]0,+\infty[$ une solution unique α . 2°) Vérifier que : $0.27 < \alpha < 0.28$.
 - b- En déduire le signe de g(x).

Partie B: Soit
$$\underline{f}$$
 la fonction définie sur $\underline{[0, +\infty[\underline{par}\,f(x) = \begin{cases} \frac{-x\log x}{x+1} & si \ x > 0 \end{cases}}$

On désiggne par $\underline{\xi_f}$ la courbe représentative de \underline{f} dans un repère orthonormé $\underline{\left(O\,,\vec{i}\,,\vec{j}\right)}$; (unité~4Cm~) Nontrer que \underline{f} est continue à droite en 0.

- 2°) Etudier la dérivabilité de f à droite en 0. Interpréter graphiquement le résultat.
- a- Vérifier que $f(\alpha) = \alpha$. 3°)
 - b- Montrer que f est dérivable sur $]0,+\infty[$ et calculer f'(x) en fonction de g(x).
 - c- Etudier les variations de \boldsymbol{f} .
 - d-Déterminer une équation cartésienne de la tangente à ξ_f au point A(1,0).
- 4°) Soit h la restriction de \underline{f} à l'intervalle $\underline{[\alpha\ , +\infty[}$
 - a- Montrer que h réalise une bijection de $[\alpha, +\infty[$ sur $]-\infty, \alpha]$.
 - b- La fonction h^{-1} est-elle dérivable à gauche en lpha .
 - c- Dresser le Tableau de variation de h^{-1} .

<u>Partie C:</u> Soit *n* un entier naturel non nul.

- 1°) Montrer que l'équation $h(x) = \alpha \frac{1}{n}$ possède dans $\underline{\alpha}, +\infty$ une seul solution α_n
- a- Montrer que $h(\alpha_{n+1}) > h(\alpha_n)$.
 - b- En déduire que la suite (α_n) est décroissante.
 - c-Montrer que $(\alpha_{\scriptscriptstyle n})$ est convergente et calculer sa limite.

BON TRAVAIL EXERCICE N°6: