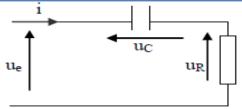
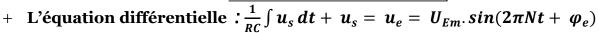


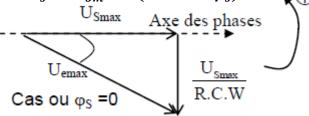
Révisions Bac


L'essentiel: Filtre passe - haut passif (CR)



2012 - 2013

Classe: 4^{éme} Tech + Info.


Montage:

Solution de l'équation différentielle : $u_s = U_{Sm} \cdot sin(2\pi Nt + \varphi_s)$

 u_e est toujours en retard de phase sur u_s

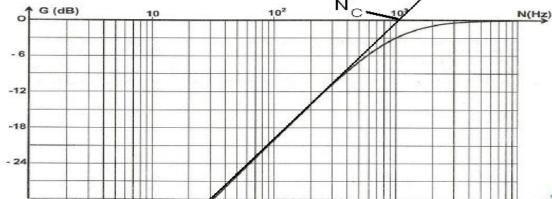
Expression de U_{Sm} : $U_{Sm} = \frac{U_{Em}}{\sqrt{1 + (\frac{1}{2\pi NRC})^2}}$

Expression de $tg(\varphi_s - \varphi_e)$: $tg(\varphi_s - \varphi_e) = \frac{1}{2\pi NRC} = \frac{1}{RC\omega}$ La transmittance T du filtre $CR : T = \frac{U_{Sm}}{U_{Em}} = \frac{1}{\sqrt{1 + (\frac{1}{2\pi NRC})^2}}$

La valeur maximale de la transmittance : $T_0 = 1$: ceci est lorsque N est très grande, c'est pourquoi le filtre CR est dit passe haut.

+ Le gain du filtre : $G = 20 log(T) = -10 log(1 + (\frac{1}{2\pi NRC})^2)$

La valeur maximale du gain : $G_0 = 0 dB$


+ La fréquence de coupure : lorsque la fréquence de la tension d'entrée est $N = N_C$, la transmittance de ce filtre est $T = \frac{T_0}{\sqrt{2}} \leftrightarrow G = G_0 - 3 dB$

On trouve que $\frac{1}{\sqrt{1+(\frac{1}{2\pi NRC})^2}} = \frac{1}{\sqrt{2}}$ ce qui donne : $N_C = \frac{1}{2\pi RC}$

Lorsque $\mathbf{N} = \mathbf{N}_{\mathrm{C}}, \, tg(\varphi_s - \varphi_e) = \frac{1}{2\pi N_c RC} = \mathbf{1} \leftrightarrow \varphi_s - \varphi_e = \frac{\pi}{4} \text{ et } U_{Sm} = \frac{U_{Em}}{\sqrt{2}}$

On peut déterminer graphiquement la fréquence de coupure en traçant la droite asypmtote (oblique) à la courbe du gain. L'intersection de cette droite avec l'axe des fréquences

nous donne la fréquence de coupure du filtre. Droite asymptote

Site web: www.matheleve.net

Contact: matheleve Toutes les matie