

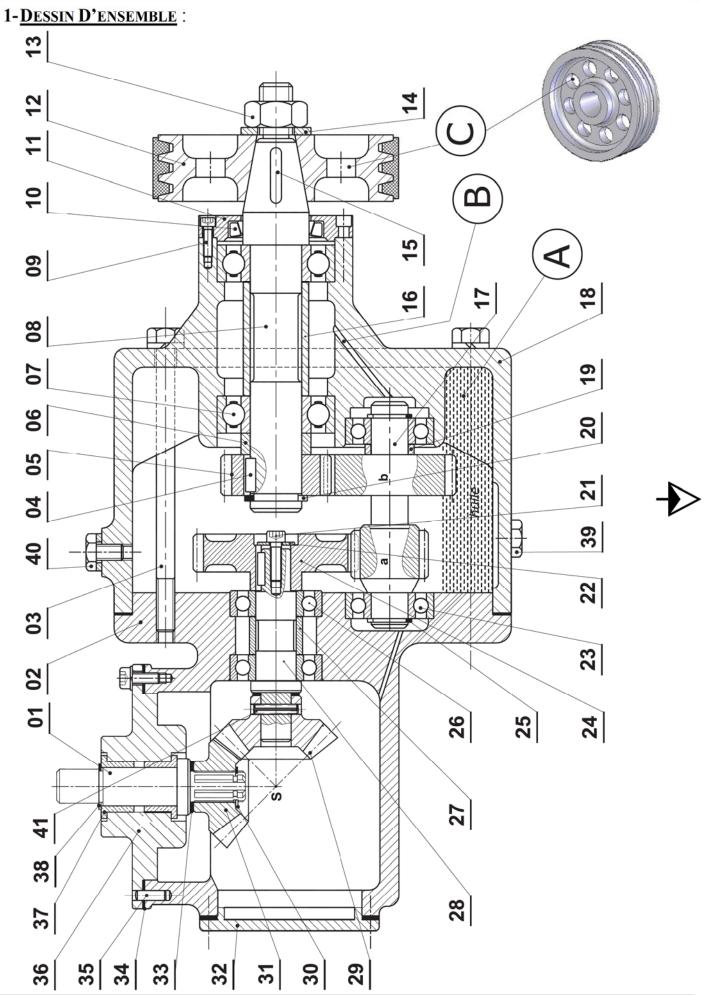
Proposé par l'enseignant:

M^R BEN ABDALLÂH MAROUAN

Classe: 4è Sciences Techniques 1

Pour la date de : Samedi 09 - Décembre - 2017

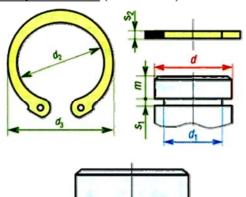
Système d'étude

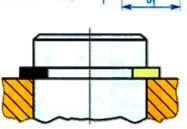

MÉCANISME D'ENTRAÎNEMENT

Version 2

Nom & Prénom:			Classe : 4 ^{ème} Sci	ences Techniques l
	Note:	/ 20		

ANNÉE SCOLAIRE : 2017-2018

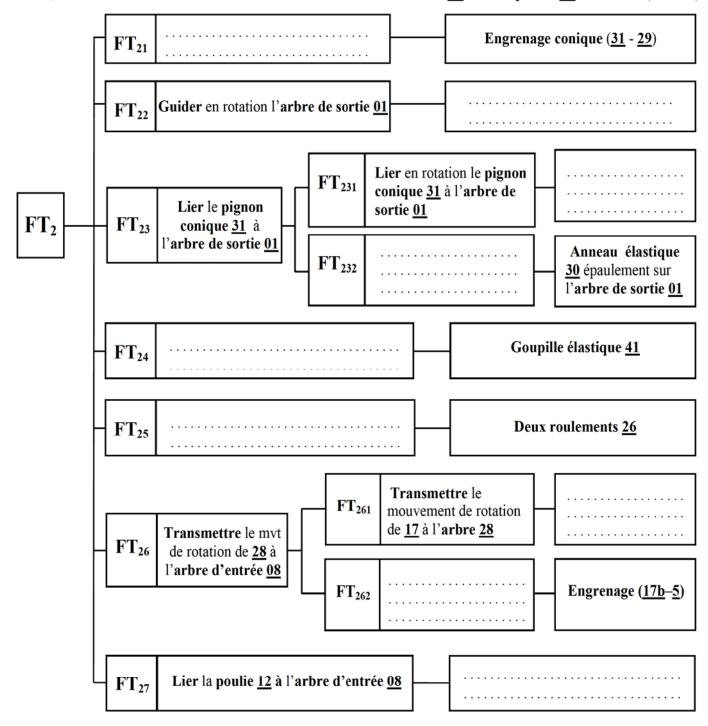

2-Nomenclature:


RÉDUCTEUR DE VITESSE Dessine Par : M ^r Ben Abdallah Marouan Le : 09-12-2017						02					
Rp	NB		SIGNATION	RP	NB	DÉSIGNATIO		NB I ^r Ren	DÉSIGNAT	ION	03
01	1	Arbre de s		15	1	Clavette Parallèle	29	1	Pignon conique		
02	1	Bâti		16	1	Bague	30	1	Anneau élastique		
03	6	Tirant		17	1	Pignon arbré	31	1	Roue conique		
04	1	Clavette		18	1	Carter	32	1	Couvercle		
05	1	Pignon		19	1	Bague	33	-	Cale de réglage		
06	1	Bague	t de type Do	20	1	Anneau élastique	34	-	Cale de réglage		
07	2		t de type BC	21	1	Vis CHc	35	1	Goupille de positionn	ement	
08	1	Arbre d'en	trée	22	1	Rondelle d'appui	36	1	Boitier		
09	6	Vis CHc	re	23	2	Roulement BC	37	2	Anneau élastique coussinet		
11	1	Couvercle Joint à lèvr		25 24	1	Anneau élastique Roue dentée	39	1	Bouchon		
12	1	Poulie		26	1	Roulements BC	40	1	Bouchon		
13	1	Écrou H		27	1	Bague	41	1	Goupille élastique		
14	1	Rondelle p	late	28	1	Arbre intermédiaire			888 13 70		

3-COMPOSANTS NORMALISÉS:

Circlips Extérieurs (Pour arbres) "NF E 22-163"

Circlips extérieurs Principales Dimensions Normalisées							
d	d ₁ h12	d ₄ *	S ₁ H13	S ₂ h11	m mini		
20	19	28,4	1,3	1,2	1,5		
25	23,9	34,2	1,3	1,2	1,7		
30	28,2	40,2	1,6	1,2	2,1		
35	33	46,2	1,6	1,5	3		
40	37,2	52,2	1,85	1,75	3,2		
45	42,2	59,1	1,85	1,75	3,2		
50	47	64,2	2,15	2	4,2		
55	52	70,2	2,15	2	4,2		


	tes parallèles mensions Normalisées	
NFE 22-175 a s×45° E	forme C	vis C ou CHe
arbre moyeu a h9		NFE 22-181
clavette	TOTHIE A	TOTHIE B

Clavettes parallèles						
<u>Principales Dimensions Normalisées</u>						
d	a	b	s	j	k	
de 6 à 8 inclus	2	2	0,16	d-1,2	d+1	
8 à 10	3	3	0,16	d-1,8	d+1,4	
10 à 12	4	4	0,16	d-2,5	d+1,8	
12 à 17	5	5	0,25	d-3	d+2,3	
17 à 22	6	6	0,25	d-3,5	d+2,8	
22 à 30	8	7	0,25	d-4	d+3,3	
30 à 38	10	8	0,4	d-5	d+3,3	
38 à 44	12	8	0,4	d-5	d+3,3	
44 à 50	14	9	0,4	d-5,5	d+3,8	
50 à 58	16	10	0,6	d- 6	d+4,3	
58 à 65	18	11	0,6	d-7	d+4,4	
65 à 75	20	12	0,6	d-7,5	d+4,9	
75 à 85	22	14	1	d- 9	d+5,4	

I- ANALYSE FONCTIONNELLE INTERNE: [8 POINTS]

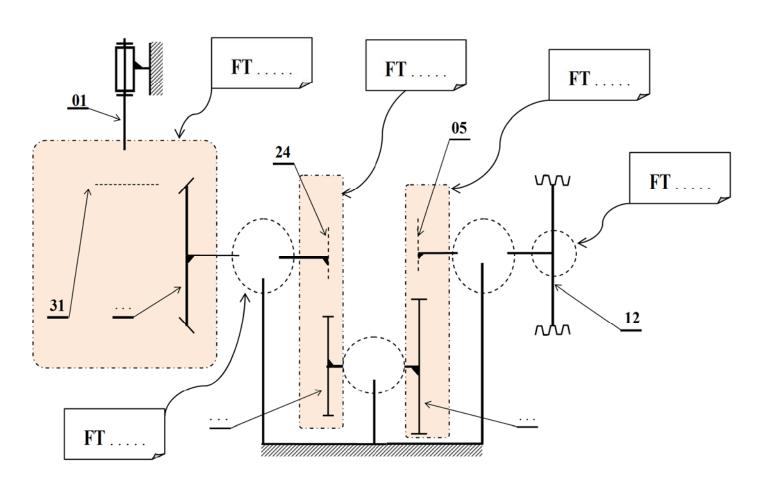
I.1- En se référant au dossier technique compléter le diagramme F.A.S.T relatif à la fonction principale

FT2: Transmettre le mouvement de rotation de l'arbre moteur 01 vers la poulie 12. (2,25 Pts)

I.2- Préciser le nom et la fonction des A, B, C:

(0,75 Pt)

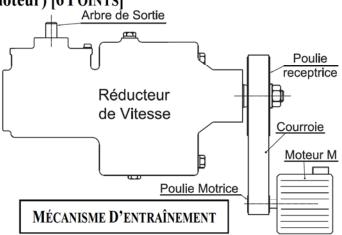
Forme	A	В	С
Nom			
Fonction			


I.3- Compléter le tableau suivant en indiquant les pièces associées aux différentes classes d'équivalence cinématique **B**, **D** et **E** ainsi que le **graphe de liaisons** mécaniques correspondant : (3,25 Pts)

C.E.C	Repère De Pièces	GRAPHE DE LIAISONS
A	01, 38, 31, 30.	(F)
В	28,	
C	17,	
D	08,	(B) (C) (D)
E	2, 3, 7 _{Bext} , 9, 11, 18, 23 _{Bext} , 26 _{Bext} , 32, 33, 34, 35, 36, 37, 39, 40.	

I.4- En se référant au dessin d'ensemble compléter le schéma cinématique suivant :

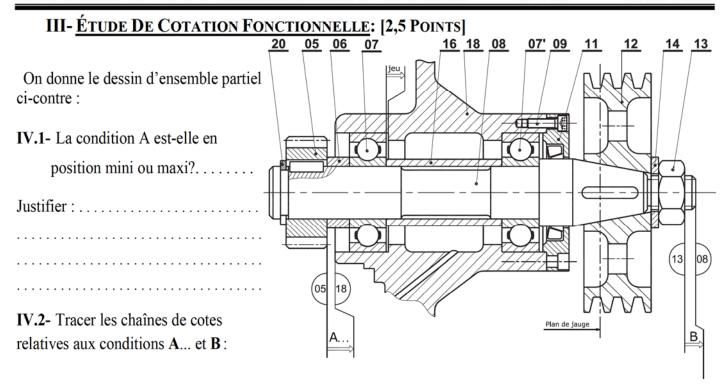
(1,75 Pts)


- ♦ Inscrire les repères de pièces manquants et les fonctions techniques.
- ♦ Compléter la représentation schématique conventionnelle de roues dentées <u>05</u>, <u>31</u>, <u>24</u>.
- ♦ Dans l'emplacement prévu ; représenter les symboles de liaisons mécaniques correspondantes.

II-CALCUL DE VÉRIFICATION: (Choix du moteur) [6 POINTS]

Le cahier des charges fonctionnel impose une vitesse maximale de sortie N_{01Maxi} =125 tr/min

L'objectif de cette partie est de vérifier si le **moteur M choisi** par le constructeur répond à cette condition.

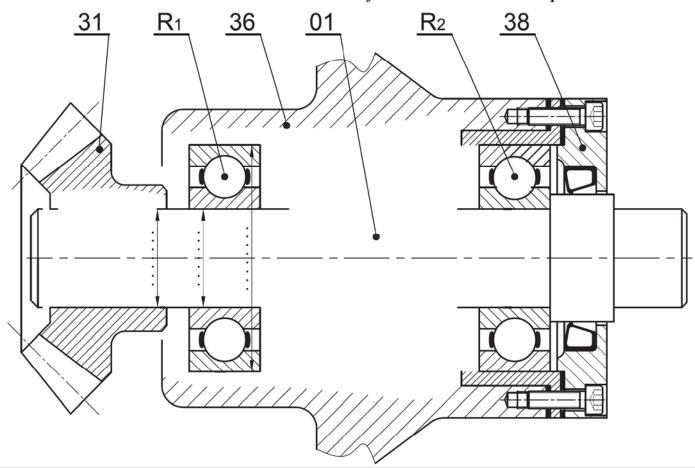

On donne:

- L'engrenage conique (29, 31) de rapport: $r_3 = 1$
- Le diamètre primitif de la roue dentée $\underline{24}$ $d_{24} = 120$ mm
- La vitesse de rotation du moteur M : Nm = 750 tr/min
- Le rapport de système Poulie courroie $r_{\rm pc} = 0.4$

Pignon arbré 17 et le pignon 05 de :

- \rightarrow Module de denture $\mathbf{m} = 2$ mm
- > Entraxe $a_{5-17} = 90 \text{ mm}$
- ightharpoonup Nombre de dents $Z_{05} = 40$ dents

II.1- Calculer le nombre de dents Z _{17b} et déduire le rapport de réduction	
	$\ldots \mathbf{Z}_{17b} = \ldots \ldots \mathbf{r}_1 = \ldots$
II.2- Calculer le rapport r ₂ d'engrenage à denture droite (17a, 24) :	(2Pt)
II.3- Calculer le rapport global de réduction rg du réducteur.	(0,5Pt)
	r _g =
II.4- Calculer la vitesse de rotation de l'arbre d'entrée <u>08</u> .	(0,5Pt)
II.5- Vérifier si la vitesse du moteur choisi répond à la condition du cahi	



IV-PRODUCTION D'UNE SOLUTION OU D'UNE MODIFICATION: [3,5 POINTS]

On désire remplacer les coussinets 37, par des roulements de type BC; R_1 et R_2 .

- V.1-Pour la nouvelle solution compléter ; à l'échelle du dessin :
 - + Le guidage en rotation de l'arbre d'entrée $\underline{01}$ par les roulements R_1 et R_2 ;
 - + La liaison encastrement de pignon conique 31 avec l'arbre d'entrée 01.
- V.2-Indiquer les tolérances de portées de roulements ainsi que l'ajustement entre **pignon** 31 et l'arbre 01.

 NB: Utiliser les éléments standards fournis sur le dossier technique

Proposé par l'enseignant:

M^R BEN ABDALLÂH MAROUAN

Classe: 4è Sciences Techniques 1

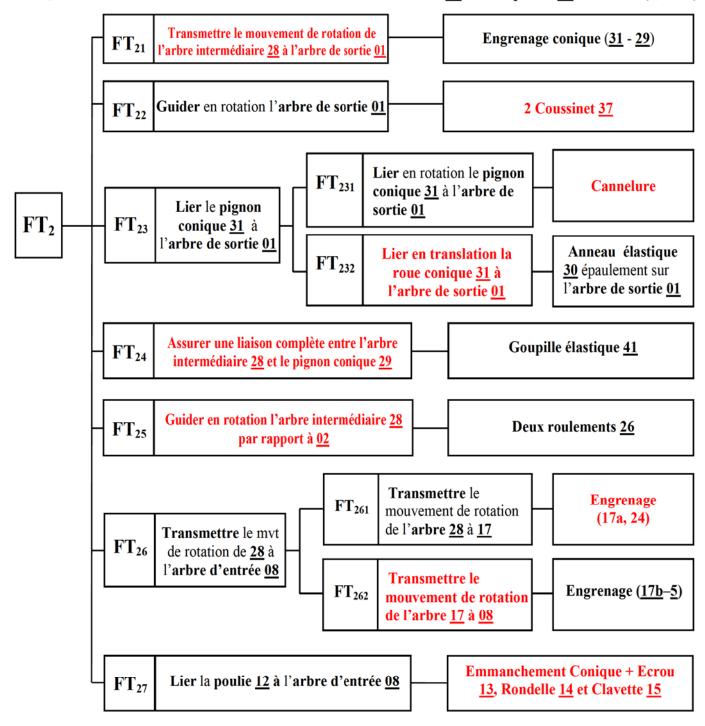
Pour la date de : Samedi 09 - Décembre - 2017

Système d'étude

MÉCANISME D'ENTRAÎNEMENT

Version 2

Nom & Prénom : _______asse : 4^{ème} Sciences Techniques 1


ANNÉE SCOLAIRE: 2017-2018

I- ANALYSE FONCTIONNELLE INTERNE: [8 POINTS]

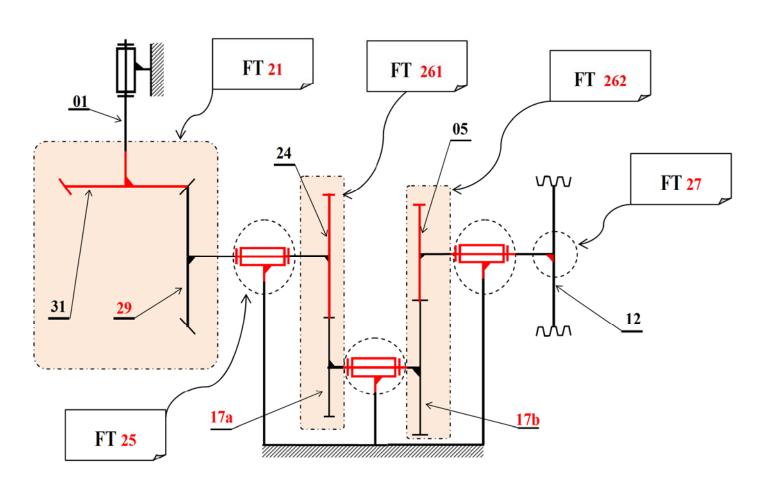
I.1- En se référant au dossier technique compléter le diagramme F.A.S.T relatif à la fonction principale

FT₂: Transmettre le mouvement de rotation de l'arbre moteur $\underline{01}$ vers la poulie $\underline{12}$. (2,25 Pts)

I.2- Préciser le nom et la fonction des A, B, C:

(0,75 Pt)

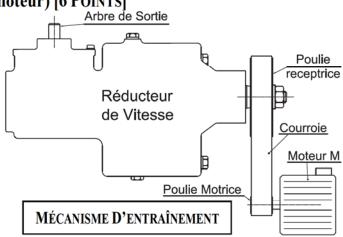
Forme	A	В	C
Nom	Réservoir d'huile	Trou d'ébauchant (durite)	Trou
Fonction	Pour stocker l'huile	Pour l'écoulement d'huile	Pour alléger la roue dentée <u>12</u>


I.3- Compléter le tableau suivant en indiquant les pièces associées aux différentes classes d'équivalence cinématique **B**, **D** et **E** ainsi que le **graphe de liaisons** mécaniques correspondant : (3,25 Pts)

C.E.C	Repère De Pièces	GRAPH E DE LIAISONS
A	01, 30, 31, 38.	A Pivot E
В	28, 21, 22, 24, 26 _{Bint} , 27, 29, 41.	
C	17, 19, 23 Bint, 25.	Pivot Pivot Engrenage Engrenage
D	08, 04, 05, 06, 7 Bint, 12, 13, 14, 15, 16, 20.	(B) (C) (D)
E	2, 3, 7 _{Bext} , 9, 11, 18, 23 _{Bext} , 26 _{Bext} , 32, 33, 34, 35, 36, 37, 39, 40.	

I.4- En se référant au dessin d'ensemble compléter le schéma cinématique suivant :

(1,75 Pts)


- ♦ Inscrire les repères de pièces manquants et les fonctions techniques.
- ♦ Compléter la représentation schématique conventionnelle de roues dentées <u>05</u>, <u>31</u>, <u>24</u>.
- ♦ Dans l'emplacement prévu ; représenter les symboles de liaisons mécaniques correspondantes.

II-CALCUL DE VÉRIFICATION: (Choix du moteur) [6 POINTS]

Le cahier des charges fonctionnel impose une vitesse maximale de sortie N_{01Maxi} =125 tr/min

L'objectif de cette partie est de vérifier si le **moteur M choisi** par le constructeur répond à cette condition.

On donne:

- L'engrenage conique (29, 31) de rapport: $r_3 = 1$
- Le diamètre primitif de la roue dentée $\underline{24}$ $d_{24} = 120$ mm
- La vitesse de rotation du moteur M : Nm = 750 tr/min
- Le **rapport** de système Poulie courroie $r_{pc} = 0.4$

Pignon arbré <u>17</u> et le pignon <u>05</u> de :

- \rightarrow Module de denture $\mathbf{m} = 2$ mm
- > Entraxe $a_{5-17} = 90 \text{ mm}$
- ➤ Nombre de dents $Z_{05} = 40$ dents

II.1- Calculer le nombre de dents Z_{17b} et déduire le rapport de réduction r_1 de l'engrenage (Z_{17b} , Z_{05}) (2Pt)

On a:
$$a_{5-17} = (Z_{05} + Z_{17b}) \times m/2 \Leftrightarrow Z_{17b} = (2 \times a_{5-17}/m) - Z_{05}$$

$$\Rightarrow$$
 Z_{17b} = (2 x 90 / 2) - 40 = 50 dents

Alors
$$r_1 = Z_{05}/Z_{17b} \Rightarrow r_1 = 40/50 = 4/5 = 0.8$$

$$Z_{17b} = 50 \text{ dents}$$
 $r_1 = 4/5$

II.2- Calculer le rapport r₂ d'engrenage à denture droite (17a, 24):

(2Pt)

On a:
$$a_{5-17} = (d_{24} + d_{17a})/2 \Leftrightarrow d_{17a} = (2 \times a_{5-17}) - d_{24} \Rightarrow d_{17a} = (2 \times 90) - 120 = 60 \text{ mm}$$

et
$$\mathbf{r}_2 = \mathbf{d}_{17a} / \mathbf{d}_{24} \Rightarrow \mathbf{r}_2 = 60/120 = 1/2$$

 $r_2 = 1/2$

II.3- Calculer le rapport global de réduction rg.

(0,5Pt)

Le rapport global de réduction $rg = r_1 \times r_2 \times r_3 \Rightarrow rg = 4/5 \times 1/2 \times 1 = 2/5 = 0,4$

$$r_g = \frac{2}{5}$$

II.4- Calculer la vitesse de rotation de l'arbre d'entrée <u>08</u>.

(0,5Pt)

On a rapport de système Poulie courroie r_{pc} = N_{08}/N_m \Leftrightarrow N_{08} = N_m × r_{pc}

$$\Rightarrow$$
 N₀₈ = 750 x 0,4 = 300 tr/min

 $N_{08} = 300 \text{ tr/min}$

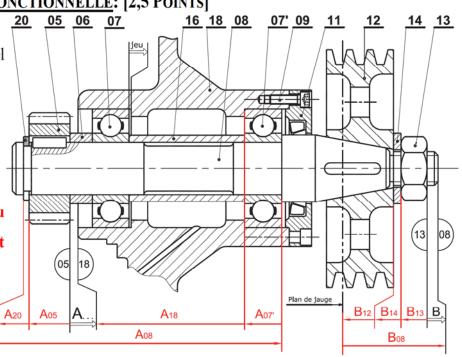
II.5- Vérifier si le moteur M choisi répond à la condition du cahier des charges fonctionnel : (1Pt)

Le rapport global de réduction $rg = N_{01} / N_{08}$

$$\Leftrightarrow$$
 N₀₁ = rg x N₀₈ \Rightarrow N₀₁ = 2/5 x 300 = 120 tr/min

Alors N₀₁ < N_{01Maxi}

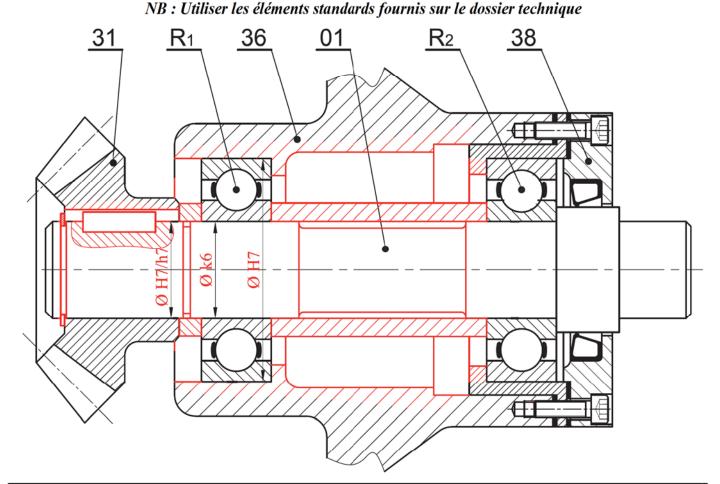
Donc le moteur M de vitesse Nm = 750 tr/min répond à la condition du cahier des charges fonctionnel.


III- ÉTUDE DE COTATION FONCTIONNELLE: [2,5 POINTS]

On donne le dessin d'ensemble partiel ci-contre :

IV.1- La condition A est-elle en position mini ou maxi? mini

Justifier : L'ensemble des éléments tournants est poussé à gauche (le Jeu sur la bague extérieure de roulement <u>07</u> se trouve à droite)


IV.2-Tracer les chaînes de cotes relatives aux conditions A_{mini} et B:

IV- PRODUCTION D'UNE SOLUTION OU D'UNE MODIFICATION: [3,5 POINTS]

On désire remplacer les coussinets 37, par des roulements de type BC; R_1 et R_2 .

- V.1-Pour la nouvelle solution compléter ; à l'échelle du dessin :
 - + Le guidage en rotation de l'arbre d'entrée $\underline{01}$ par les roulements R_1 et R_2 ;
 - + La liaison encastrement de pignon conique 31 avec l'arbre d'entrée 01.
- V.2-Indiquer les tolérances de portées de roulements ainsi que l'ajustement entre **pignon 31** et l'arbre <u>01</u>.

