NOM :	PRENON	М :	4TN° :	
DUREE : 2 HEURES	ROLE № 03 EN ELECTR 5 - 4 ^{<u>6</u>} T - 26 / AVRIL / 201	10		
			20	
INTRODUCTION : II s'	'agit d'un local à usage	industriel comportant	plusieurs réseaux et	
récepteurs triphasés.		-		
	HRONES TRIPHASES :.			
	fférentes machines du lo			
	s accompagnées par les		ions adéquates :	
"Couplage etolle."Cot *Enroulement s sous	uplage triangle.*Grillage	e des enrouiements.		
RESEAUX	380/660V	220/380V	127/220V	
11202/10/1	330,0001		,	
MOTEURS				
220/380V				
Explications :				
127/220V				
Explications :				
Explications:				
380/660V				
Explications :				
B- MOTEUR ASYNCH	⊥ IRONE TRIPHASE Â CA	L GE N°1 : M1 : Régime no	 	
étoile.		TOD IV IV <u>III I</u> V IVegime no	minute on coupings	
Les enroulements statoric	ques du moteur constituent	trois dipôles D récepteurs i	dentiques : alimentés en	
régime sinusoïdal, ils pré	sentent chacun une impédar	nce Z et introduisent chacu	n un déphasage φ.	
		i i	n(t) D	
Afin de déterminer les 2 g		3 1	-	
on réalise un couplage ét		†	2(t) D	
enroulements de ce mote			-	
A l'aide d'un dispositif and différentielle et pince amp		v _{IN} (t)	3(t)D	
relève la tension simple		V _{2N} (t)	-	
courant en ligne i1(t).On		v ₃₃ (t)		
	a partir desquelles on vous α ution ω des grandeurs sinus			
		•••••		
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	

NOM :		PR			4TN° :
		V1N (t)	t en ms et i1 (t)		
Tension en V	400 300 200 100 -100 -200 -300	5 10	15 20	25 38	Contant en V
			-		
3- L impedano		oar un enrouiemei	/ 0,5pt.		
4- Le déphasa	ge ω présenté p	ar un enroulemen	t· /0.5nt.		
_			_		
On désire mes	surer la puissanc seul wattmètre c	-	*	r le montage adéquat e	en le justifiant n :/0,5pts.
*Si vous avez	utilisez celui à	2 wattmètres ;dét	erminer les valeurs	a valeur de la lecture des lectures de chacur divisions pour les 2 cas	ne des 2 aiguilles.
LOCAL IND	USTRIEL	DP DU DC03	TOTAL PAR	PAGE :/	Devoir.†n

NOM :	PRENOM :	4TN° :
C-MOTEUR M₁ EN COUPLAGE		
	que l'on veut coupler en triangle mais sou	us un autre réseau de
tensions triphasées.	que i en reur coupier en mangre mans ser	
	les tensions simples et composées en l'exp	nliquant · /1nt.
	tes tensions simples et composees en 1 exp	•
2-Calculer les valeurs des courants l		
	т. Ст. Д	
3-Comparez I _Δ à I _Y et J _Δ à J _Y :		
-	./1pt.	
4 On your donne : /1 5nts		
· •		
$v_1(t) = V \max. \sin(\omega t);$		•••••
$v_2(t) = Vmax sin(\omega t - 2\Pi/3);$		• • • • • • • • • • • • • • • • • • • •
$v_3(t) = Vmax \sin(\omega t - 4\Pi/3)$.		
Représenter vectoriellement les		
différentes tensions et courants :		
Echelles:		
5xx correspond à 1mm		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
5v correspond à 1mm. 1A correspond à 3mm.		
-		
-		
-		

NOM:
D-MOTEUR ASYNCHRONE \underline{M}_2 : So placed simplifying in direct 127 π /220 π + 400Hz + 20 π (π) = 0.6 + So prince the accordance on the 2h armony
Sa plaque signalétique indique :127v/220v ; 400Hz ; $\cos(\alpha) = 0.6$; Sa résistance mesurée entre 2bornes du stator est $R = 0.32\Omega$.
1-Calculer le glissement g en % à l'instant du démarrage :/ 0,5pt.
1-Calculor ic ghissement g ch /0 a r instant du demarrage
2-Le point de coordonnés ($T_U = 12,24$ N.m; $n' = 10^4$ tr/min) appartient à la caractéristique $T_U = F(n')$
La caractéristique du couple résistant $Tr = F(n') = 23,15.10^{-9}(n')^2$.
Déterminer les coordonnés du point de fonctionnement :/2,5pts.
3-Sachant que le rendement est $\eta = 87\%$ sous un réseau de 220v.
a-Calculer la puissance absorbée Pa autour de ce point de fonctionnement :/1pt.
<u> </u>
b-Calculer les pertes joules statorique Pjs autour de ce point:/1pt.
^ · · · · · · · · · · · · · · · · · · ·