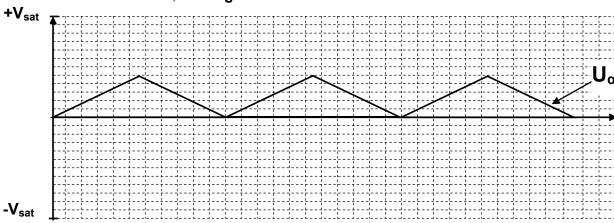
Nom:	Prénom: N°: 4Sc.T2	
	Génie Electrique	/20

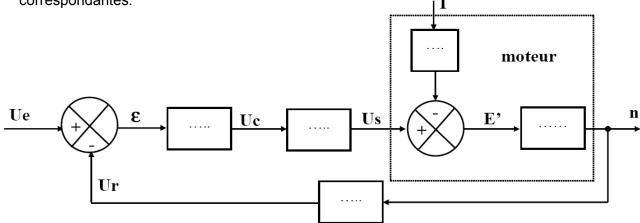

I – Etudes des amplificateurs linéaires intégrés :

Le capteur angulaire donnant la position du coffre durant l'ouverture ou la fermeture est un potentiomètre (voir figure 2 du dossier technique page 2/2) et permettant ainsi de convertir une position angulaire α (allant de 0 à 180°) en tension continue U α (allant de 0 à $V_{réf}$ = 9v).

1. Exprimer Uα en fonction de α :
2. Etude du bloc A
a. Exprimer U'α en fonction de Un et Uα si R1=R2=R3=R4=R=1kΩ.
b. Déduire le rôle du bloc A.
3. Etude du bloc B
a. Donner le régime de fonctionnement de l'amplificateur. (Justifier votre réponse).
b. Déduire le rôle du bloc B.
C. Donner les expressions des tensions seuils V_{haut} et V_{bas} pour R5 = 10 kΩ, R6 = 60 kΩ, +Vsat =
12V et -Vsat = - 12V ; <u>lorsque Vd =0.</u>

e. Sur la figure ci-dessous, on donne la tension Uα. Pour Un = 2v (DC), tracer avec la couleur bleu la courbe de U'α, en rouge la courbe de Um et en vert la courbe de U'm.

d. Déduire que V_{haut} = - V_{bas} = 2v :.....

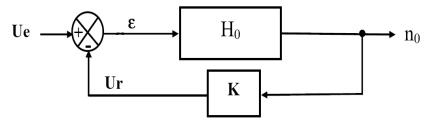


II - Etude de l'asservissement du moteur M1

Les équations de fonctionnement de ce moteur en régime permanent, sont les suivantes :

$$\varepsilon$$
 = Ue – Ur ; Uc = A. ε ; Us = K1.Uc ; E'= Us – R.I ; n = E'/ K2 et Ur = K3.n

1. Compléter le schéma fonctionnel ci-dessous en marquant A, K1, R, 1/K2, et K3 dans les cases correspondantes.

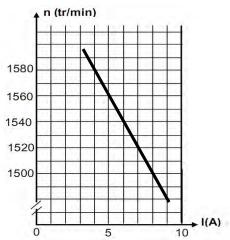


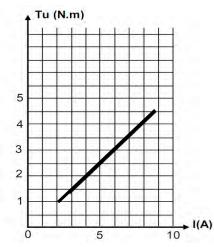
On donne dans la suite : A=20, K1=44, R= 2 Ω , K2= 0,2 v.mn/tr et K3 =5.10⁻³ v.mn/tr (La vitesse est exprimée en tour/minute).

- 2. Etude de fonctionnement à vide du moteur du coffre :
 - a. Que deviennent ces équations lorsque le moteur fonctionne à vide c.à.d (I=0) et (n=n₀) :

b. Représenter alors le nouvel schéma fonctionnel correspondant aux équations trouvées en (a) :

C. Le schéma précédent peut se mettre sous la forme ci-dessous :


c-1. Déterminer les expressions de la transmittance de la chaîne directe ($H_0 = n_0 / \varepsilon$) ainsi que la transmittance de la chaine de retour $K = (Ur / n_0)$.


H₀ = et **K** =

- c-2. Calculer la valeur de H₀:.....
- c-3. Donner l'expression de la transmittance du montage : $T_0 = n_0 / U_e$

III - Etude et commande du moteur à courant continu

On donne les caractéristiques du Moteur à Courant Continu, ainsi les allures n=f(I) et Tu=f(I) à une tension d'alimentation U constante et à flux constant.

Caractéristiques nominales du Moteur:

*Tension de l'induit fixe : $U_N = 120 \text{ V}$

*Courant de l'induit :

 $I_{N} = 8 A$

*Tension d'excitation fixe:

 $U_{exc} = u = 120 \text{ V}$

*Résistance d'inducteur:

 $r = 300 \Omega$

*Résistance d'induit :

 $R_a = 1.2 \Omega$

*Fréquence de rotation :

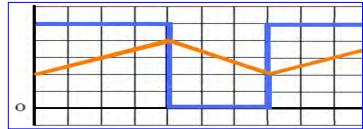
n = 1500 tr/min

1. Fonctionnement nominal:

A partir des caractéristiques nominales de ce moteur, déterminer :

d- La puissance absorbée par l'inducteur (Pas)......

e- La puissance absorbée totale par le moteur (Pat):.....


f- Le rendement (en %) de ce moteur :.....

2. Fonctionnement en charge: La vitesse en charge du moteur est 1560 tr/min, déduire:

a- Le courant absorbé :....

b- Le couple utile correspondant à cette charge :.....

3. Commande par un hacheur série : Un hacheur série (ou bien abaisseur) alimente ce moteur à courant continu. On utilise un oscilloscope bi-courbe dont les deux allures R'.Im et Um comme indiqué sur le schéma ci-dessous. La résistance shunt R' est égale 0,6 \, \Omega.

U_m: tension aux bornes de moteur I_m : courant traversé par le moteur

Voie 1: U_m 24 v / div Voie 2: R'.I_m 0.8 v / div Base de temps: 0.2 ms / div

a- Mettre sur les deux allures lesquelles R'.Im et Um.

b- Quel but d'utiliser ce convertisseur :.....

c- Indiquer la fréquence de hachage f :.....

d- Déterminer la valeur du rapport cyclique $lpha$:
e- Déterminer la valeur de la tension d'alimentation E :
f- En déduire la valeur de la tension moyenne <u< b="">_C> :</u<>
IV - Etude d'un moteur asynchrone triphasé
Soit un moteur asynchrone triphasé tètrapolaire portant sur sa plaque signalétique les indications suivantes : 220v / 380v – 50Hz. La résistance entre deux bornes du stator est mesurée à chaud: r = 2.4Ω 1. Sachant que le réseau est : 220v / 380v – 50Hz, Quel couplage doit-on réaliser?
2. Déduire la résistance d'un enroulement statorique R :
3. Le moteur à subi deux essais sur le même réseau donnant les résultats suivants :
* Essai à vide : $n_0=n_s$; $Cos\phi_0=0.3$ et $P_0=800W$.
* Essai en charge: I=8A; g=4%; Pa ₁ =2.5kW et Pa ₂ =1.2kW « Méthode de deux wattmètres ».
a. <u>Pour le fonctionnement à vide, calculer :</u>
☐ Que représente la puissance absorbée à vide par le moteur :
☐ La fréquence de rotation et le glissement :
☐ L'intensité du courant en ligne I₀:
\Box Les pertes constantes et les pertes fers statorique, en admettant que $\mathbf{p_{fs}} = \mathbf{p_m}$:
b. <u>Pour le fonctionnement en charge, calculer :</u>
☐ La fréquence de rotation du moteur :
☐ La puissance absorbée totale et le facteur de puissance :
☐ La puissance transmise au rotor P _{tr} et les pertes par effet joule dans le rotor p _{jr} :
RAVAIL