MATHÉMATIQUES

Section: Sciences de l'informatique

Session de contrôle 2021

Exercice 1:

1) a)
$$(\sqrt{3}-i)^2 = \sqrt{3}^2 - 2 \times \sqrt{3} \times i + i^2 = 3 - 2\sqrt{3} \ i - 1 = 2 - 2 \ i\sqrt{3}$$

Donc $(\sqrt{3} - i)^2 = 2 - 2 \ i\sqrt{3}$

b)
$$\Delta = [-(\sqrt{3} + 3 i)]^2 - 4 \times 1 \times (-2 + 2 i\sqrt{3})$$

 $= (\sqrt{3} + 3 i)^2 + 8 - 8 i\sqrt{3}$ $= 3 + 6 i\sqrt{3} - 9 + 8 - 8 i\sqrt{3}$
 $= 2 - 2 i\sqrt{3} = (\sqrt{3} - i)^2$

Donc $\delta = \sqrt{3} - i$ une racine carrée de Δ

D'où
$$Z_1 = \frac{(\sqrt{3}+3i)-(\sqrt{3}-i)}{2}$$
 et $Z_2 = \frac{(\sqrt{3}+3i)+(\sqrt{3}-i)}{2}$
 $= \frac{\sqrt{3}+3i-\sqrt{3}+i}{2}$ $= \frac{\sqrt{3}+3i+\sqrt{3}-i}{2}$
 $= 2i$ $= \sqrt{3}+i$

Ainsi $S_{\mathbb{C}} = \{ (2i); (\sqrt{3} + i) \}$

2) a)
$$\overline{Z_C} \times (Z_B - Z_A) = \overline{(21 + \sqrt{3} + 1)} \times (\sqrt{3} + i - 2i)$$

$$= \overline{(\sqrt{3} + 31)} \times (\sqrt{3} - i) = (\sqrt{3} - 3i) \times (\sqrt{3} - i)$$

$$= 3 - \sqrt{3}i - 3\sqrt{3}i - 3 = -4i\sqrt{3}$$

b)
$$OA = |Z_A - Z_O| = |2i| = 2$$

$$OB = |Z_B - Z_O| = |\sqrt{3} + i| = \sqrt{\sqrt{3}^2 + 1^2} = \sqrt{4} = 2$$

$$Donc OA = OB = 2$$

D'où les points A et B appartiennent au cercle Γ de centre O et de rayon 2.

c)
$$Z_A=2 \ i \ donc \ A \in (0,\overrightarrow{v})$$

$$Z_B=\sqrt{3}+i \ donc \ Im(Z_B)=1 \ , \ d\text{`où } B \in \Delta:y=1$$

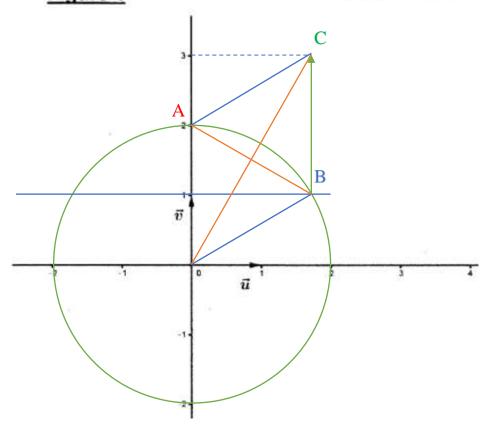
$$Or \ B \in \Gamma \ donc \ B \in \Delta \cap \Gamma \ avec \ R\acute{e}(Z_B)>0$$

$$Z_C=Z_A+Z_B=2i+\sqrt{3}+i=\sqrt{3}+3 \ i$$

$$R\acute{e}(Z_C)=R\acute{e}(Z_B) \ et \ Im(Z_C)=3$$

Figure 1

Annexe à rendre



d)
$$Z_C = Z_A + Z_B$$
 alors $\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{OB}$

Donc OACB est un parallélogramme

Or OA = OB d'où OACB est un losange

3)
$$|Z - 2i| = |Z - \sqrt{3} - i| \iff |Z_M - Z_A| = |Z_M - Z_B|$$

 \Leftrightarrow AM = BM \Leftrightarrow F est la médiatrice du segment [AB]

Or OACB est un losange donc (OC) est la médiatrice du segment [AB]

Exercice 2:

1) a) Pour tout
$$n \in \mathbb{N}$$
 on $a : U_{n+1} + 2 = \frac{1}{2} U_n - 1 + 2 = \frac{1}{2} U_n + 1 = \frac{1}{2} (U_n + 2)$
Pour tout $n \in \mathbb{N}$ on $a : U_{n+1} + 2 = \frac{1}{2} (U_n + 2)$

b) On a:
$$U_0 = 0$$
 alors $U_0 > -2$

Soit $n \in \mathbb{N}$ supposons que $U_n > -2$ et montrons que $U_{n+1} > -2$

On a : $U_n > -2$ alors $\frac{1}{2} U_n > -1$ donc $\frac{1}{2} U_n - 1 > -2$ d'où $U_{n+1} > -2$

Ainsi pour tout $n \in \mathbb{N}$ on a: $U_n > -2$

c) Pour tout
$$n \in \mathbb{N}$$
 on a: $U_{n+1} - U_n = \frac{1}{2}U_n - 1 - U_n$
$$= \frac{U_n - 2 - 2U_n}{2} = \frac{-2 - U_n}{2}$$

Or On a : $U_n > -2$ sig $-U_n < 2$ sig $-2 - U_n < 0$ d'où $U_{n+1} - U_n < 0$ Ainsi la suite (U_n) est décroissante.

d) La suite (U_n) est décroissante et minorée par (-2)

Donc elle est convergente ver une limite finie 1 tel que $1 \ge -2$

Soit f la fonction définie par $f(x) = \frac{1}{2}x - 1$

f est une fonction polynôme donc elle est continue sur $\mathbb R$ donc f est continue en $\mathbb I$

Donc l'est une solution de l'équation f(x) = x

$$f(x) = x \Leftrightarrow \frac{1}{2}x - 1 = x \Leftrightarrow x - 2 = 2x \Leftrightarrow -2 = 2x - x \Leftrightarrow -2 = x$$

Donc
$$1 = -2$$
 Ainsi $\lim_{n \to +\infty} U_n = -2$

2) a) Pour tout $n \in \mathbb{N}$ on a:

$$\begin{aligned} V_{n+1} &= Ln(U_{n+1} + 2) &= Ln\left(\frac{1}{2}U_n - 1 + 2\right) = Ln\left(\frac{1}{2}U_n + 1\right) = Ln\left(\frac{U_n + 2}{2}\right) \\ &= Ln(U_n + 2) - Ln(2) &= V_n + Ln\left(\frac{1}{2}\right) \end{aligned}$$

Donc (V_n) est suite arithmétique de raison $r = Ln(\frac{1}{2})$

b) On a : (V_n) est suite arithmétique de raison $r = Ln\left(\frac{1}{2}\right)V_n = V_0 + n$ r

Or (V_n) est de raison $r = Ln(\frac{1}{2})$ et premier terme $V_0 = Ln(2)$

Donc pur tout $n \in \mathbb{N}$ on $a : V_n = Ln(2) + n Ln(\frac{1}{2})$

$$= -\operatorname{Ln}\left(\frac{1}{2}\right) + \operatorname{n}\operatorname{Ln}\left(\frac{1}{2}\right)$$

$$= (n-1) \operatorname{Ln}\left(\frac{1}{2}\right)$$

c) On a : $V_n = Ln(U_n + 2) \iff Ln(U_n + 2) = (n-1) Ln(\frac{1}{2})$

$$\Leftrightarrow \operatorname{Ln}(U_n + 2) = \operatorname{Ln}\left[\left(\frac{1}{2}\right)^{n-1}\right] \Leftrightarrow U_n + 2 = \left(\frac{1}{2}\right)^{n-1} \Leftrightarrow U_n = \left(\frac{1}{2}\right)^{n-1} - 2$$

Ainsi pour tout $n \in \mathbb{N}$, on $a : U_n = 2\left(\frac{1}{2}\right)^n - 2$

d)
$$U_n \le -1,99$$
 sig $2\left(\frac{1}{2}\right)^n - 2 \le -1,99$

sig
$$2\left(\frac{1}{2}\right)^n \le 2 - 1,99$$
 sig $2\left(\frac{1}{2}\right)^n \le 0,01$

sig
$$\left(\frac{1}{2}\right)^n \le 0.005$$
 sig $\operatorname{Ln}\left[\left(\frac{1}{2}\right)^n\right] \le \operatorname{Ln}(0.005)$

sig
$$n \operatorname{Ln}\left(\frac{1}{2}\right) \le \operatorname{Ln}(0,005)$$
 sig $n \ge \frac{\operatorname{Ln}(0,005)}{\operatorname{Ln}(0,5)}$
sig $n \ge 7,6438561...$

A partir de n = 8, $U_n \le -1.99$

Exercice 3:

1) a) $5 \times 2 - 3 \times 3 = 10 - 9 = 1$

Donc le couple (2, 3) est solution de l'équation (E).

b) On a : $5 \land 3 = 1$ donc l'équation (E) admet des solutions

(x,y) est une solution de l'équation (E)

$$\Leftrightarrow 5 \times -3 \times = 10 \Leftrightarrow 5 \times -3 \times = 5 \times 2 - 3 \times 3$$

$$\frac{3 \text{ divise 5 } (x-2)}{5 \land 3=1} = \frac{\text{Lemme de Gauss}}{\text{Lemme de Gauss}} 3 \text{ divise } (x-2)$$

 \Rightarrow il existe un entier relatif k tel que x -2 = 3 k

$$\Rightarrow x = 3k + 2 \text{ avec } k \in \mathbb{Z}$$

Or
$$5(x-2) = 3(y-3)$$
 alors $5 \times 3 k = 3(y-3)$ donc $5 k = y-3$

Donc y = 5 k + 3

$$5 \times (3k + 2) - 3(5k + 3) = 15k + 10 - 15k - 9 = 1$$

Ainsi $S_{\mathbb{Z}\times\mathbb{Z}} = \{ (3 k + 2; 5 k + 3) \text{ avec } k \in \mathbb{Z} \}$

2) a) On a: $2021 = 5 \times 404 + 1$ donc $2021 \equiv 1 [5]$

On a
$$2021 = 3 \times 673 + 2$$
 donc $2021 \equiv 2 [3]$

D'où 2021 est un élément de S.

b) Le couple (p,q) vérifie $\begin{cases} n=5 \ p+1 \\ n=3 \ q+2 \end{cases}$ ou n est un élément de S.

$$5p + 1 = 3q + 2 \iff 5p - 3q = 1$$

Donc le couple (p, q) est solution de l'équation (E).

c) n est un élément de S alors $\begin{cases} n \equiv 1 \ [5] \\ n \equiv 2 \ [3] \end{cases}$

Donc il existe un couple
$$(p,q)$$
 vérifie
$$\begin{cases} n = 5 \ p + 1 \\ n = 3 \ q + 2 \end{cases}$$

Donc le couple (p, q) est solution de l'équation (E)

D'où p =
$$3k + 2$$
 et q = $5k + 3$ avec $k \in \mathbb{Z}$

Donc
$$n = 5p + 1 = 5 (3k + 2) + 1 = 15k + 10 + 1 = 15k + 11$$

Ainsi $n \equiv 11 [15]$

- 3) a) On a: $2021 \equiv 1 [5]$ donc $2021^{2021} \equiv 1^{2021} [5]$ D'où $2021^{2021} \equiv 1 [5]$
 - b) On a 2021 \equiv 2 [3] donc 2021² \equiv 4 [3] D'où 2021² \equiv 1 [3]

$$2021^{2021} \equiv 2021^{2 \times 1010 + 1} [3] \text{ donc } 2021^{2021} \equiv (2021^2)^{1010} \times 2021^1 [3]$$

 $\text{donc } 2021^{2021} \equiv 1^{1010} \times 2[3]$
 $\text{d'où } 2021^{2021} \equiv 2[3]$

c) On a $2021^{2021} \equiv 1 [5]$ et $2021^{2021} \equiv 2 [3]$

Donc 2021²⁰²¹ est un élément de S

Donc
$$2021^{2021} \equiv 11 [15]$$

D'où le reste de la division euclidienne de 2021²⁰²¹ est 11

Exercice 4:

1) a)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} e^x - \frac{1}{2} x^2 = -\infty \text{ (car } \lim_{x \to -\infty} e^x = 0)$$

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{e^x - \frac{1}{2}x^2}{x} = \lim_{x \to -\infty} \frac{e^x}{x} - \frac{x}{2} = +\infty \text{ (car } \lim_{x \to -\infty} \frac{e^x}{x} = 0)$$

La courbe (C) admet une branche parabolique de direction celle de l'axe des ordonnées au voisinage de $(-\infty)$

b)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} e^x - \frac{1}{2} x^2 = \lim_{x \to +\infty} x^2 \left(\frac{e^x}{x^2} - \frac{1}{2} \right) = +\infty \text{ (car } \lim_{x \to +\infty} \frac{e^x}{x^2} = +\infty \text{)}$$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{e^{x} - \frac{1}{2}x^{2}}{x} = \lim_{x \to +\infty} \frac{e^{x}}{x} - \frac{x}{2} = \lim_{x \to +\infty} x \left(\frac{e^{x}}{x^{2}} - \frac{1}{2} \right) = +\infty$$

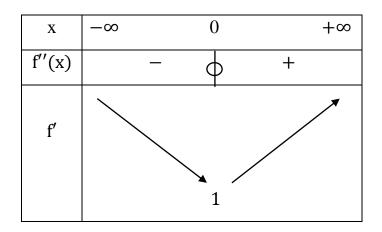
La courbe (C) admet une branche parabolique de direction celle de l'axe des ordonnées au voisinage de $(+\infty)$

2) a) Pour tout
$$x \in \mathbb{R}$$
 on $a : f'(x) = e^x - x$

Pour tout $x \in \mathbb{R}$ on $a : f''(x) = e^x - 1$

b)
$$e^x - 1 \ge 0 \iff e^x \ge 1$$

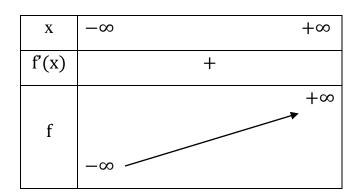
$$\Leftrightarrow x \ge 0$$



f'admet un minimum absolu en 0 égale a 1

Donc pour tout $x \in \mathbb{R}$ on $a : f'(x) \ge 1$

c)



d) On a f est continue et strictement croissante sur $\mathbb R$

Donc f réalise une bijection de \mathbb{R} sur $f(\mathbb{R}) =]-\infty; +\infty[$

Or $0 \in]-\infty$; $+\infty[$ donc l'équation f(x)=0 admet dans $\mathbb R$ une unique solution α .

On a:
$$f(-1) = e^{-1} - \frac{1}{2} = \frac{1}{e} - \frac{1}{2} < 0$$

On a :
$$f(-0.8) = e^{-0.8} - \frac{1}{2} \times (-0.8)^2 > 0$$

Donc
$$-1 < \alpha < -0.8$$

3) a) La dérivée seconde s'annule et change de signe en 0 et f(0) = 1

Donc le point K(0,1) est un point d'inflexion de la courbe (C)

b) Une équation de la tangente à (C) au point K est :y = f'(0)(x - 0) + f(0)

Or f(0) = 1 et f'(0) = 1, donc T: y = x + 1 est la tangente à (C) au point K.

4) a) Pour tout \mathbb{R} , g'(x) = f'(x) - 1

Pour tout $x \in \mathbb{R}$, $g'(x) \ge 0$ car $f'(x) \ge 1$

D'où la fonction g est croissante

g est croissante sur \mathbb{R}

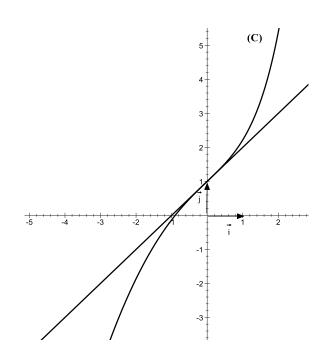
- si x < 0 alors g(x) < g(0) donc g(x) < 0
- si $0 \le x$ alors $g(0) \le g(x)$ donc $0 \le g(x)$

X	-∞	0	+∞
g(x)	_	ф	+

c)

X	-∞	0	+∞
f(x) - y = g(x)	_	ф +	
Position	T/ _(C)	T∩(C)	(C)/ _T

d)



5)
$$A = \int_{\alpha}^{0} |f(x)| dx = \int_{\alpha}^{0} f(x) dx = \int_{\alpha}^{0} e^{x} - \frac{1}{2} x^{2} dx$$

$$= \left[e^{x} - \frac{1}{6} x^{3} \right]_{\alpha}^{0} = (e^{0} - 0) - \left(e^{\alpha} - \frac{1}{6} \alpha^{3} \right) = 1 - e^{\alpha} + \frac{1}{6} \alpha^{3}$$
Or $f(\alpha) = 0 \Rightarrow e^{\alpha} = \frac{1}{2} \alpha^{2}$
Donc $A = \frac{1}{6} \alpha^{3} - \frac{1}{2} \alpha^{2} + 1$ (ua)