RÉPUBLIQUE TUNISIENNE

MINISTÈRE DE L'ÉDUCATION

EXAMEN DU BACCALAURÉAT SESSION 2021	Session de contrôle				
Épreuve : Mathématiques	Section : Sciences de l'informatique				
Durée : 3h	Coefficient de l'épreuve: 3				

*	*	*	*	*

N° d'inscription							
	C	S					

Le sujet comporte 4 pages. La page 4 sur 4 est à rendre avec la copie

Exercice N°1: (4 points)

- 1) On considère dans \mathbb{C} l'équation (E): $z^2 (\sqrt{3} + 3i)z 2 + 2i\sqrt{3} = 0$.
 - a) Vérifier que $(\sqrt{3} i)^2 = 2 2i\sqrt{3}$.
 - b) Résoudre l'équation (E).
- 2) Dans le plan complexe muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère les points

A, B et C d'affixes respectives $z_A = 2i$, $z_B = \sqrt{3} + i$ et $z_C = z_A + z_B$.

- a) Calculer $\overline{z}_{C}(z_{B}-z_{A})$ et en déduire que (OC) \pm (AB).
- b) Montrer que les points A et B appartiennent au cercle Γ de centre O et de rayon 2.
- c) Dans l'annexe ci-jointe figure 1, placer le point A et construire les points B et C.
- d) Montrer que OACB est un losange.
- 3) Soit F l'ensemble des points M d'affixe z tel que $|z-2i| = |z-\sqrt{3}-i|$.

Montrer que F est la droite (OC).

Exercice N° 2: (5 points)

On considère la suite $\left(u_n\right)$ définie sur $\mathbb N$ par $\begin{cases} u_0=0,\\ u_{n+1}=\frac{1}{2}u_n-1\,, \text{ pour tout } n\in\mathbb N. \end{cases}$

- 1) a) Vérifier que pour tout $n \in \mathbb{N}$, $u_{n+1} + 2 = \frac{1}{2}(u_n + 2)$.
 - b) Montrer par récurrence que pour tout $n \in \mathbb{N}, \ u_n > -2.$
 - c) Montrer que la suite (un) est décroissante.
 - d) Déduire que la suite (un) est convergente et calculer sa limite.
- 2) Soit la suite (v_n) définie sur \mathbb{N} par : $v_n = \ln(u_n + 2)$.
 - a) Démontrer que (v_n) est une suite arithmétique de raison $r = ln(\frac{1}{2})$.
 - b) Exprimer v_n en fonction de n.

- c) Montrer que pour tout $n \in \mathbb{N}$, $u_n = 2\left(\frac{1}{2}\right)^n 2$.
- d) A partir de quelle valeur de n, $u_n \le -1,99$?

Exercice N°3: (5 points)

- 1) On considère dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E): 5x 3y = 1.
 - a) Vérifier que le couple (2,3) est solution de l'équation (E).
 - b) Résoudre l'équation (E).
- 2) Soit S l'ensemble des entiers relatifs n vérifiant : $\begin{cases} n \equiv 1[5], \\ n \equiv 2[3]. \end{cases}$
 - a) Vérifier que 2021 est un élément de S.
 - b) Soit n un élément de S et (p,q) le couple d'entiers relatifs vérifiant $\begin{cases} n = 5p + 1, \\ n = 3q + 2. \end{cases}$ Montrer que le couple (p,q) est solution de l'équation (E).
 - c) Déduire que si n est un élément de S alors n = 11[15].
- 3) a) Montrer que $2021^{2021} \equiv 1[5]$.
 - b) Justifier que $2021^2 \equiv 1[3]$ et déduire que $2021^{2021} \equiv 2[3]$.
 - c) Déterminer le reste de la division euclidienne de 2021²⁰²¹ par 15.

Exercice N°4: (6 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = e^x - \frac{1}{2}x^2$ et on désigne par (C) sa courbe représentative dans un repère orthonormé $(0,\vec{i},\vec{j})$.

- 1) a) Déterminer $\lim_{x\to -\infty} f(x)$ et $\lim_{x\to -\infty} \frac{f(x)}{x}$. Interpréter graphiquement le résultat.
 - b) Montrer que $\lim_{x \to +\infty} f(x) = +\infty$ et $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$. Interpréter graphiquement le résultat.
- 2) a) Montrer que pour tout $x \in \mathbb{R}$, $f''(x) = e^x 1$. (f'' est la dérivée seconde de la fonction f).
 - b) Etudier le sens de variation de f' et en déduire que pour tout $x \in \mathbb{R}$, $f'(x) \ge 1$.
 - c) Dresser le tableau de variation de la fonction f.
 - d) Montrer que l'équation f(x) = 0 admet dans \mathbb{R} une unique solution α et que: $-1 < \alpha < -0.8$.
- 3) a) Montrer que le point K(0,1) est un point d'inflexion de la courbe (C).
 - b) Montrer que la droite T: y = x + 1 est la tangente à (C) au point K.

- 4) Soit g la fonction définie sur \mathbb{R} par g(x) = f(x) (x+1).
 - a) Montrer que pour tout $x \in \mathbb{R}$, $g'(x) \ge 0$.
 - b) Calculer g(0) et en déduire le signe de g.
 - c) Déterminer la position relative de (C) et T.
 - d) Dans l'annexe ci-jointe figure 2, tracer T et (C).
- 5) On désigne par A l'aire, en unité d'aire, de la partie du plan limitée par la courbe (C), l'axe des abscisses et les droites d'équations $x = \alpha$ et x = 0.

Montrer que
$$A = \frac{1}{6}\alpha^3 - \frac{1}{2}\alpha^2 + 1$$
.

	Section :		N° d	'inscription	ı:		Série :	·· Signatu	res des surv	eillants
	Nom et Prénom :									
	Date et lieu	de naissanc	e:							
×										
	Épre	uve: Math	ématiqu	ues - Sec	tion :	Science	es de l'in	formatiqu	е	
Figure	1			sion de xe à rer						
119010	·									
	3-									
- 1	2-									
							8-			
	$ec{v}$									
-2	-1 0		2	3						
		\overline{u}^{1}								
	-1-									*
						.1				
	-2					4				
Figure	2					3+				
rigare	<u> </u>					2				
						2				
						1				
										
			-3	-2	-1	0	→ 1 i	2	3	4
						-1				
						-2				
						-3				
					ē.					

Page 4 sur 4