Epreuve : Mathématiques Section : Sciences Techniques Session de Contrôle 2022

Exercice 1:

1) a) A(1,2,1), B(1,0,-1), C(3,2,1)
$$\Longrightarrow \overrightarrow{AB} \begin{pmatrix} 0 \\ -2 \\ -2 \end{pmatrix}$$
 et $\overrightarrow{AC} \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$

•
$$\overrightarrow{AB} \wedge \overrightarrow{AC} = \begin{bmatrix} -2 & 0 \\ -2 & 0 \end{bmatrix} \overrightarrow{i} - \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix} \overrightarrow{j} + \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix} \overrightarrow{k} = 0\overrightarrow{i} - 4\overrightarrow{j} + 4\overrightarrow{k}$$

• $\overrightarrow{AB} \wedge \overrightarrow{AC} \neq \overrightarrow{0}$ donc \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires \Rightarrow A, B et C ne sont pas alignés

b)
$$\vec{n} \begin{pmatrix} 0 \\ -4 \\ 4 \end{pmatrix} = \overrightarrow{AB} \wedge \overrightarrow{AC}$$
 est un vecteur normal au plan P = (ABC)

d'où
$$P: -4y + 4z + d = 0$$
 où $d \in \mathbb{R}$

Or B(1,0,-1)
$$\in$$
 P donc $-4 + d = 0 \implies d = 4$ ainsi P: $-4y + 4z + 4 = 0$

En simplifiant par (-4) on aura : P : y - z - 1 = 0

2) a)
$$\overrightarrow{AB}$$
. $\overrightarrow{AC} = xx' + yy' + zz' = 0 \times 2 - 2 \times 0 - 2 \times 0 = 0$ d'où $\overrightarrow{AB} \perp \overrightarrow{AC}$
Comme A, B et C sont non alignés alors ABC est un triangle rectangle en A

b) I = B * C alors
$$x_I = \frac{x_B + x_C}{2} = \frac{1+3}{2} = \frac{4}{2} = 2$$
 de même $y_I = \frac{0+2}{2} = 1$ et $z_I = \frac{1-1}{2} = 0$
Ainsi I(2, 1, 0)

3) a)
$$S: x^2 + y^2 + z^2 - 4x - 2y + 2 = 0 \iff S: x^2 - 4x + 4 + y^2 - 2y + 1 + z^2 = -2 + 4 + 1$$

 $\iff S: (x - 2)^2 + (y - 1)^2 + z^2 = 3 = \sqrt{3}^2$

D'où S est la sphère de centre I(2, 1, 0) et de rayon $R = \sqrt{3}$

b) On a : I \in P donc d = d(I, P) = 0 < R donc r = $\sqrt{R^2 - d^2}$ = R et par suite la sphère S coupe le plan P suivant le cercle ζ de centre I et de rayon R = $\sqrt{3}$

c)
$$IB^2 = IC^2 = (3-2)^2 + (2-1)^2 + (1-0)^2 = 3 = R^2$$
 donc B et C appartiennent à la sphère S $IA^2 = (1-2)^2 + (2-1)^2 + (1-0)^2 = 3 = R^2$ donc A \in S

On a : A, B et C appartiennent à la fois au plan P et à la sphère S

donc A, B et C appartiennent au cercle $\zeta = P \cap S$

Conclusion : ζ est le cercle circonscrit au triangle ABC

4) a)
$$\Delta:\begin{cases} x=2\\ y=-\alpha+1 \text{ où } \alpha \in \mathbb{R}\\ z=\alpha \end{cases}$$

On remarque que
$$\vec{u} \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$
 est un vecteur directeur de Δ . On $a: \vec{u} = \frac{1}{4}\vec{n}$ d'où $\Delta \perp P$

pour $\alpha=0$ on vérifie que $I\in\Delta\;$ d'où Δ est une droite perpendiculaire à P en I

b) Pour tout
$$\alpha \in \mathbb{R}$$
, $M_{\alpha}(2, 1-\alpha, \alpha)$ alors $d(M_{\alpha}, P) = \frac{|1-\alpha-\alpha-1|}{\sqrt{0^2+1^2+1^2}} = \frac{2|\alpha|}{\sqrt{2}} = \sqrt{2}|\alpha|$

c) On remarque que $M_0=I\ \ donc\ pour\ \alpha\neq 0\ \ ,$ $ABCM_{\alpha}$ est un tétraèdre.

$$V_{\alpha} = \frac{1}{3} \text{aire(ABC)} \times \text{IM}_{\alpha} = \frac{1}{6} \left\| \overrightarrow{AB} \wedge \overrightarrow{AC} \right\| \times d(M_{\alpha} \text{ , P}) = \frac{1}{6} \times \left\| \overrightarrow{n} \right\| \times \sqrt{2} |\alpha| = \frac{\sqrt{32} \times \sqrt{2} |\alpha|}{6} = \frac{4}{3} |\alpha|$$

d)
$$V_{\alpha} = \frac{2\sqrt{6}}{3} \iff 4|\alpha| = 2\sqrt{6} \iff |\alpha| = \frac{\sqrt{6}}{2} \iff \alpha = \pm \frac{\sqrt{6}}{2}$$

e)
$$M_{\alpha} \in S \iff IM_{\alpha}^{2} = 3 \iff 2\alpha^{2} = 3 \iff \alpha^{2} = \frac{3}{2} = \frac{6}{4} \iff \alpha = \pm \frac{\sqrt{6}}{2}$$

Exercice 2:

1) **a**)
$$(2\sqrt{3} + 2i)^2 = 12 - 4 + i8\sqrt{3} = 8 + i8\sqrt{3}$$

$$\begin{array}{ll} \textbf{b}) & z^2 - 2i\sqrt{3}z - 5 - 2i\sqrt{3} = 0 \quad \text{ainsi a} = 1, \, b = -2i\sqrt{3} \quad \text{et } c = -5 - i2\sqrt{3} \\ & \Delta = b^2 - 4ac = -12 + 20 + i8\sqrt{3} = 8 + i8\sqrt{3} = \left(2\sqrt{3} + 2i\right)^2 = \delta^2 \quad \text{avec } \delta = 2\sqrt{3} + 2i \\ & \text{d'où } z' = \frac{-b + \delta}{2a} = \sqrt{3} + i\left(1 + \sqrt{3}\right) \quad \text{et } z'' = \frac{-b - \delta}{2a} = -\sqrt{3} + i\left(-1 + \sqrt{3}\right) \\ & S_{\mathbb{C}} = \left\{\sqrt{3} + i\left(1 + \sqrt{3}\right) \right., -\sqrt{3} + i\left(-1 + \sqrt{3}\right)\right\} \end{array}$$

$$\begin{aligned} \textbf{2)} \quad \textbf{a)} \quad z_E &= 1, \ z_F = \sqrt{3} + i \Big(1 + \sqrt{3} \Big) \ \text{et} \quad z_G = -\sqrt{3} + i \Big(-1 + \sqrt{3} \Big) \\ z_G &- 1 = -\sqrt{3} + i \Big(-1 + \sqrt{3} \Big) i - 1 = i^2 \sqrt{3} + i \Big(-1 + \sqrt{3} \Big) + i^2 \\ z_G &- 1 = i \left(i \Big(\sqrt{3} + 1 \Big) + \Big(-1 + \sqrt{3} \Big) \right) = i (z_F - 1) \end{aligned}$$

b)
$$\frac{z_G - z_E}{z_F - z_E} = \frac{z_G - 1}{z_F - 1} = i \in i\mathbb{R}^*$$
, donc $\overrightarrow{EG} \perp \overrightarrow{EF}$ ainsi le triangle EFG est rectangle en E $\left|\frac{z_G - z_E}{z_F - z_E}\right| = \left|\frac{z_G - 1}{z_F - 1}\right| = |i| = 1$, donc EG = EF ainsi le triangle EFG est isocèle en E

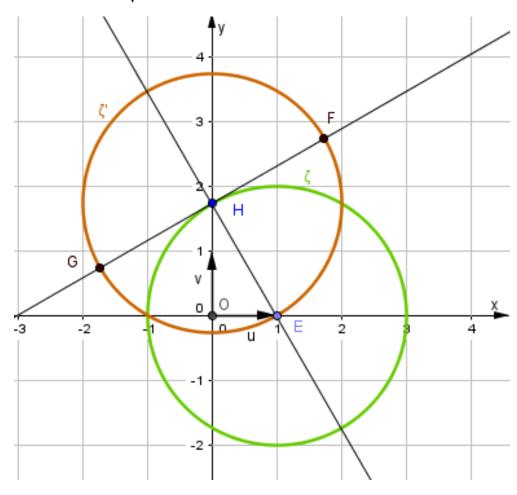
Conclusion : EFG est un triangle isocèle et rectangle en E

c)
$$H = F * G$$
 alors $z_H = \frac{z_G + z_F}{2} = i\sqrt{3}$

d) EFG est isocèle en E alors E est un point de la médiatrice du segment [FG]
 Or H = F * G d'où (EH) est la médiatrice du segment [FG]

3) a)
$$\text{HE} = |z_E - z_H| = \left|1 - i\sqrt{3}\right| = \sqrt{1^2 + \left(-\sqrt{3}\right)^2} = \sqrt{1 + 3} = 2 \text{ d'où } H \in \zeta(E, 2)$$

b)



- **4) a)** On a : H = G * F alors HG = HF = $|z_F z_H| = |\sqrt{3} + i| = \sqrt{4} = 2$ d'où HE = HG = HF = 2 donc le cercle ζ' de centre H et de rayon 2 est circonscrit au triangle
 - **b)** Voir figure avec (HE) et (FG) perpendiculaires en E

Exercice 3:

- 1) **a**) $u_0 = \frac{3}{2}$ et $u_{n+1} = \frac{\sqrt{3u_n^2 + 4}}{2}$, pour tout $n \in \mathbb{N}$
 - On a : $1 < u_0 = \frac{3}{2} < 2$ d'où la propriété est vraie pour n = 0.
 - • Soit $n \in \mathbb{N}$. On suppose que $1 < u_n < 2$ et montrons que $1 < u_{n+1} < 2$ $1 < u_n < 2 \implies 1 < u_n^2 < 4 \implies 3 < 3u_n^2 < 12$ $\Rightarrow 7 < 4 + 3u_n^2 < 16 \Rightarrow \sqrt{7} < \sqrt{4 + 3u_n^2} < 4 \Rightarrow \frac{\sqrt{7}}{3} < \frac{\sqrt{4 + 3u_n^2}}{3} < 2$ Or $1 < \frac{\sqrt{7}}{2}$ donc $1 < u_{n+1} < 2$

Conclusion : Pour tout $n \in \mathbb{N}$ on a : $1 < u_n < 2$

- **b)** Pour tout $n \in \mathbb{N}$ on $a : u_{n+1}^2 u_n^2 = \frac{3u_n^2 + 4 4u_n^2}{4} = \frac{4 u_n^2}{4}$ **c)** Pour tout $n \in \mathbb{N}$ on $a : u_{n+1}^2 u_n^2 = \frac{4 u_n^2}{4} = \frac{(2 u_n)(2 + u_n)}{4} > 0$
 - donc $u_{n+1}^2 > u_n^2$ et puis que la suite est positive alors $u_{n+1} > u_n$ donc la suite (u_n) est croissante sur N
 - La suite (u_n) est croissante sur N et majorée par 2 alors elle est convergente vers une limite ℓ avec $1 \le \ell \le 2$
 - $u_{n+1} = f(u_n)$ où f est la fonction : $x \mapsto \frac{\sqrt{3x^2+4}}{2}$ avec f est une fonction continue sur \mathbb{R} en particulier en ℓ donc ℓ verifie l'équation $f(\ell) = \ell$ et par suite $\sqrt{3\ell^2 + 4} = 2\ell$
 - d'où $3\ell^2 + 4 = 4\ell^2 \Longrightarrow \ell^2 = 4$ donc $\ell = +2$ or $1 \le \ell \le 2$ donc $\ell = 2$
- 2) a) Pour tout $n \in \mathbb{N}$ on a: $v_n = u_n^2 4$ d'où $v_{n+1} = u_{n+1}^2 - 4 = \frac{3u_n^2 + 4}{4} - 4 = \frac{3u_n^2 - 12}{4} = \frac{3}{4}(u_n^2 - 4) = \frac{3}{4}v_n$ Donc la suite (v_n) est géométrique de raison $q = \frac{3}{4}$
 - **b**) $v_0 = u_0^2 4 = \frac{9}{4} 4 = -\frac{7}{4}$ d'où pour tout $n \in \mathbb{N}$ on $a : v_n = -\frac{7}{4} \times \left(\frac{3}{4}\right)^n$
 - c) Pour tout $n\in\mathbb{N}$ on $a:{u_n}^2=4+v_n$ avec $u_n>0\;$ donc $\;u_n=\sqrt{4+v_n}\;$ Par suite $u_n = \sqrt{4 - \frac{7}{4} \times \left(\frac{3}{4}\right)^n}$
- 3) Pour tout $n \in \mathbb{N}$ on a $S_n = \sum_{k=0}^n u_k^2 = \sum_{k=0}^n (4 + v_k)$ $S_n = v_0 + 4 + v_1 + 4 + \dots + v_n + 4 = (v_0 + v_1 + \dots + v_n) + 4(n - 0 + 1)$ $S_{n} = -\frac{7}{4} \times \frac{1 - \left(\frac{3}{4}\right)^{n+1}}{1 - \frac{3}{4}} + 4n + 4 = -7\left(1 - \left(\frac{3}{4}\right)^{n+1}\right) + 4(n+1)$ $\lim_{n \to +\infty} \frac{S_n}{n} = \lim_{n \to +\infty} -\frac{7}{n} \left(1 - \left(\frac{3}{4} \right)^{n+1} \right) + 4 \left(\frac{n+1}{n} \right) = 0 + 4 = 4$

Exercice 4:

1) a)
$$g(x) = x^2 + 2 - 2 \ln x$$
, $D_g =]0, +\infty[$

X	0	1	. + a	2
g'(x)	-	0	+	
g(x)		•		

b)
$$g(1) = 1 + 2 = 3$$
 or $g(x) > g(1)$ pour tout $x > 0$ donc $g(x) > 0$ pour tout $x > 0$

2) a)
$$f(x) = x + \frac{2 \ln x}{x}$$
, $D_f =]0$, $+\infty[$, $\lim_{x \to 0^+} f(x) = -\infty$ et $\lim_{x \to +\infty} f(x) = +\infty$

b) f est dérivable en tout réel x > 0 et f'(x) = 1 +
$$2 \frac{x \times \frac{1}{x} - 1 \times \ln x}{x^2} = \frac{x^2 + 2 - 2 \ln x}{x^2} = \frac{g(x)}{x^2}$$

c)

X	0 +∞
f'(x)	+
f(x)	_∞ +∞

d) f est continue sur $]0, +\infty[$ et $f(]0, +\infty[) = \mathbb{R}$

Comme $0 \in \mathbb{R}$ alors il admet au moins un antécédent α dans]0, $+\infty[$ par f Or f est strictement croissante sur]0, $+\infty[$ alors α est unique.

e) f(0,7) = -0.32 < 0 et f(0,8) = 0.24 > 0

D'après le Théorème des valeurs intermédiaires $0.7 < \alpha < 0.8$

3) a)
$$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \frac{2 \ln x}{x} = 2 \times 0 = 0$$

Ainsi la droite Δ : y = x est une asymptote oblique à ζ au $V(+\infty)$

b) Pour tout réel x > 0 on $a : f(x) - x = \frac{2 \ln x}{x}$, le signe de (f(x) - x) est celui de $\ln x$

X	0	1 +∞
ln x		0 +
Position de ζ et Δ	ζ est au-dessous de Δ	ζ est au-dessus de Δ

 ζ et Δ se coupent au point de coordonnées (1, 1)

4) a) T: y = f'(e)(x - e) + f(e) avec $f(e) = e + \frac{2}{e}$ et f'(e) = 1 d'où T: $y = x + \frac{2}{e}$ T et Δ ont le même coefficient directeur qui vaut 1 donc $T/\!/\Delta$

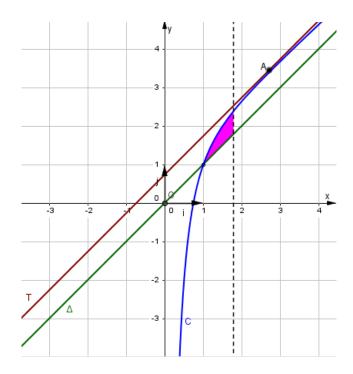
b) Pour tout réel x > 0 on a f(x) - $\left(x + \frac{2}{e}\right) = \frac{2\ln x}{x} - \frac{2}{e} = \frac{2}{ex} (e \ln x - x)$

c) $h(x) = e \ln x - x$, $D_h =]0$, $+\infty[$

h est dérivable en tout réel x>0 et $h'(x)=\frac{e}{x}-1=\frac{e-x}{x}$, $h'(x)=0\Longrightarrow x=e$

X	0	e	+∞
h'(x)	+	0	_
h(x)		0	•

5)



6) a) Si $\lambda > 1$, $I(\lambda) = \int_1^{\lambda} |f(x) - x| dx = \int_1^{\lambda} 2 \frac{\ln x}{x} dx = [\ln^2(x)]_1^{\lambda} = \ln^2(\lambda) - 0 = \ln^2(\lambda)$ Si $\lambda \le 1$, $I(\lambda) = \int_{\lambda}^{1} |f(x) - x| dx = \int_{\lambda}^{1} -2 \frac{\ln x}{x} dx = \int_{1}^{\lambda} 2 \frac{\ln x}{x} dx = \ln^2(\lambda)$

Conclusion : Pour tout réel $\lambda > 0$ on a : $I(\lambda) = \ln^2(\lambda)$

- **b**) Pour tout réel $\lambda > 0$ on $a: \frac{1}{\lambda} > 0$ et $\ln^2\left(\frac{1}{\lambda}\right) = (-\ln\lambda)^2 = \ln^2(\lambda)$ alors $I\left(\frac{1}{\lambda}\right) = I(\lambda)$
- c) $I(\lambda) = 2 \Leftrightarrow \ln^2(\lambda) = 2 \Leftrightarrow \ln \lambda = \pm \sqrt{2} \Leftrightarrow \lambda = e^{\sqrt{2}} \text{ ou } \lambda = e^{-\sqrt{2}} = \frac{1}{e^{\sqrt{2}}}$